首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal energy storage units conventionally have the drawback of slow charging response. Thus, heat transfer enhancement techniques are required to reduce charging time. Using nanoadditives is a promising approach to enhance the heat transfer and energy storage response time of materials that store heat by undergoing a reversible phase change, so-called phase change materials. In the present study, a combination of such materials enhanced with the addition of nanometer-scale graphene oxide particles (called nano-enhanced phase change materials) and a layer of a copper foam is proposed to improve the thermal performance of a shell-and-tube latent heat thermal energy storage (LHTES) unit filled with capric acid. Both graphene oxide and copper nanoparticles were tested as the nanometer-scale additives. A geometrically nonuniform layer of copper foam was placed over the hot tube inside the unit. The metal foam layer can improve heat transfer with an increase of the composite thermal conductivity. However, it suppressed the natural convection flows and could reduce heat transfer in the molten regions. Thus, a metal foam layer with a nonuniform shape can maximize thermal conductivity in conduction-dominant regions and minimize its adverse impacts on natural convection flows. The heat transfer was modeled using partial differential equations for conservations of momentum and heat. The finite element method was used to solve the partial differential equations. A backward differential formula was used to control the accuracy and convergence of the solution automatically. Mesh adaptation was applied to increase the mesh resolution at the interface between phases and improve the quality and stability of the solution. The impact of the eccentricity and porosity of the metal foam layer and the volume fraction of nanoparticles on the energy storage and the thermal performance of the LHTES unit was addressed. The layer of the metal foam notably improves the response time of the LHTES unit, and a 10% eccentricity of the porous layer toward the bottom improved the response time of the LHTES unit by 50%. The presence of nanoadditives could reduce the response time (melting time) of the LHTES unit by 12%, and copper nanoparticles were slightly better than graphene oxide particles in terms of heat transfer enhancement. The design parameters of the eccentricity, porosity, and volume fraction of nanoparticles had minimal impact on the thermal energy storage capacity of the LHTES unit, while their impact on the melting time (response time) was significant. Thus, a combination of the enhancement method could practically reduce the thermal charging time of an LHTES unit without a significant increase in its size.  相似文献   

2.
Thermal energy storage is a technique that has the potential to contribute to future energy grids to reduce fluctuations in supply from renewable energy sources. The principle of energy storage is to drive an endothermic phase change when excess energy is available and to allow the phase change to reverse and release heat when energy demand exceeds supply. Unwanted charge leakage and low heat transfer rates can limit the effectiveness of the units, but both of these problems can be mitigated by incorporating a metal foam into the design of the storage unit. This study demonstrates the benefits of adding copper foam into a thermal energy storage unit based on capric acid enhanced by copper nanoparticles. The volume fraction of nanoparticles and the location and porosity of the foam were optimized using the Taguchi approach to minimize the charge leakage expected from simulations. Placing the foam layer at the bottom of the unit with the maximum possible height and minimum porosity led to the lowest charge time. The optimum concentration of nanoparticles was found to be 4 vol.%, while the maximu possible concentration was 6 vol.%. The use of an optimized design of the enclosure and the optimum fraction of nanoparticles led to a predicted charging time for the unit that was approximately 58% shorter than that of the worst design. A sensitivity analysis shows that the height of the foam layer and its porosity are the dominant variables, and the location of the porous layer and volume fraction of nanoparticles are of secondary importance. Therefore, a well-designed location and size of a metal foam layer could be used to improve the charging speed of thermal energy storage units significantly. In such designs, the porosity and the placement-location of the foam should be considered more strongly than other factors.  相似文献   

3.
A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO–coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.  相似文献   

4.
A novel inorganic calcium-based phase change material(PCM-Ca) consisted of 47.1%(mass fraction) water, 47.7% calcium chloride, 2% potassium nitrate, 2% potassium bromide and 1.2% strontium chloride with a solid-liquid phase change temperature of 21.4 ℃ was investigated systematically. Among the components of PCM-Ca, calcium chloride and water act as the latent heat storage materials, and potassium nitrate, potassium bromide and strontium chloride work as the modifier, thickener and nucleating agent, respectively. Thermochemical properties including melting point, latent heat, density and thermal conductivity of the PCM-Ca were measured experimentally. The experimental results indicate that the melting latent heat, thermal conductivity at the melting point and density at room temperature for the PCM-Ca are 203.3 kJ/kg, 1.3637 W·m-1·K-1 and 1.55×103 kg/m3, respectively. Moreover, a thirty-run-cycling test showed that the PCM-Ca has a good thermal characteristic with no phase segregation or supercooling, and the maximum deviations of latent heat and phase change temperature are only 0.2% and 1.6%, respectively.  相似文献   

5.

This paper presents the numerical analysis of the transient performance of the latent heat thermal energy storage unit established on finite difference method. The storage unit consists of a shell and tube arrangement with phase change material (PCM) filled in the shell space and the heat transfer fluid (HTF) flowing in the inner tube. The heat exchange between the HTF, wall and PCM has been investigated by developing a 2-D fully implicit numerical model for the storage module and solving the complete module as a conjugate problem using enthalpy transforming method. A comparative investigation of the total melting time of the PCM has been performed based on natural convection in liquid PCM during the charging process. The novelty of this paper lies in the fact it includes convection in PCM and this investigation includes a detailed parametric study which can be used as a reference to design latent heat storage. The results indicate that natural convection accelerates the melting process by a significant amount of time. In order to optimize the design of the thermal storage unit, parametric study has been accompanied to analyze the influence of various HTF working conditions and geometric dimensions on the total melting time of the PCM. Another important feature considered in this work is the influence of the inner wall of the tube carrying the HTF on the entire melting time of the PCM. An error of around 7.2% is reported when inner wall of the tube is ignored in the analysis.

  相似文献   

6.

In this study, technological and heat isolation properties of porous ultra-lightweight porcelain foams were investigated. Traditional construction materials such as brick show good durability against environmental conditions. Bricks are also a good alternative compared to pumice blocks and autoclaved aerated concrete which are largely used as construction materials. Bricks are also more economical than the other construction materials. But they also have poorer thermal insulation properties. Among the construction material, XPS shows the best heat isolation properties. XPS (extruded polystyrene foam) is a polymeric material. Although XPS shows best heat insulation property, it easily flames. The aim of this study is developing porous porcelain isolation materials lighter than water by using a replication method and relatively better thermal isolation properties than the other construction materials.

  相似文献   

7.

The present study aims to enhance the hydrothermal performance of a porous sinusoidal double-layered heat sink using nanofluid. The optimum thickness of metal foam (nickel) for different Reynolds numbers ranging from 10 to 100 for the laminar regime and Darcy numbers ranging from 10?4 to 10?2 is obtained. At the optimum porous thicknesses, nanofluid (silver–water) with three volume fractions of nanoparticles equal to 2, 3, and 4% is employed to enhance the heat sink thermal performance. Darcy–Brinkman–Forchheimer model and the local thermal non-equilibrium model or two equations method are employed to model the momentum equation and energy equations in the porous region, respectively. It was found that in the cases of Darcy numbers 10?4, 10?3, and 10?2 the dimensionless optimum porous thicknesses are 0.8, 0.8, and 0.2, respectively. It was also obtained that the maximum PEC number is 2.12 and it corresponds to the case with Darcy number 10?2, Reynolds number 40, and volume fraction of nanoparticles 0.04. The validity of local thermal equilibrium (LTE) assumption was investigated, and it was found that increasing the Darcy number which results in an enhancement in porous particle diameter leads to some errors in results, under LTE condition.

  相似文献   

8.
换热器与相变材料的兼容性研究进展   总被引:1,自引:0,他引:1  
相变材料是一类以潜热实现能量存储释放的储能材料,由于其在相变温度附近具有很大的储热密度,相变材料可以被用于建筑控温、太阳能热发电和高温传热蓄热等应用中。 换热器是相变储能设备的重要组成部分,可以将热量在供需两端进行传递和转移,保障需求一方的使用,随着相变材料研究的不断深入及其工程应用的广泛普及,换热器已在众多相变储能项目中发挥了重要的枢纽作用。 为了保证换热器的使用性能,需要对换热器在相变材料中的防腐蚀性进行全面的分析。 本文总结了大量国内外的文献,分析不同成分的相变材料对换热器材料的腐蚀性,为换热器材料的选择提供了参考。  相似文献   

9.
相变蓄热材料研究进展   总被引:2,自引:0,他引:2  
戴远哲  唐波  李旭飞  张振宇 《化学通报》2019,82(8):717-724,730
相变蓄热材料(恒温潜热热能储存材料)是目前最热门的功能材料之一。它在发生相变时储存、放出的热量能够帮助所在系统进行能量的储存,同时可以一定程度上缓解双方在时间、强度及地点上的不匹配程度。相变蓄热材料优点突出,其中包括在使用过程中自身温度变化较小、有很好的稳定性、储热能力较强等。此类材料对环境友好,响应了国家近年来节能环保的政策,同时也可以极大地优化所在系统的运行效率。本文综述了近年来几类相变蓄热材料的种类、特点及国内外学者应对于不同缺陷做出的改进及其应用于行业的研究现状,并对未来的发展进行了探讨与展望。  相似文献   

10.

The synthesis of phase change materials based on NaCl–CaCl2 molten salt mixture and mesoporous silica was investigated. The influence of mesoporous silica porosity and salt concentration on the thermal energy storage properties of the resulting materials is discussed. The nanocomposite samples were characterized by X-ray diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, scanning electron microscopy and X-ray photoelectron spectroscopy. The mesoporous silica was found to act as a reactive matrix for the molten salts. Composite samples with up 95% wt. salt can be obtained and used as shape-stabilized phase change materials. The materials have heat of fusion values of up to 60.8 J g?1 and specific heat capacity between 1.0 and 1.1 J g?1 K?1. The samples exhibit thermal stability up to 700 °C and can be used for high-temperature thermal energy storage through both latent and sensible heat storage mechanisms.

  相似文献   

11.
通过碱处理,优化了硅藻土(DIA)的孔隙结构,提高了孔隙率,增加了石蜡(paraffin)负载量。通过直接浸渍法制备了新型性状稳定的石蜡/碱改性DIA/膨胀石墨(EG-alDIAP)复合材料,并研究了其结构与性能的关系。结果表明,复合相变材料的石蜡负载量从47.4%提高到了61.1%,进而提高了复合材料的储热性能;向改性DIA中添加膨胀石墨(EG)提高了复合材料的传热能力,添加质量分数10%EG时导热系数提高了113%(从0.276 W·m-1·K-1提高到了0.589 W·m-1·K-1)。随着EG含量的升高,复合相变材料的相变潜热有所增加,但化学相容性、稳定性等无明显变化。含 10%EG的石蜡/碱改性 DIA复合材料具有可靠的储能性能、良好的温度调节性能和蓄放热能力。  相似文献   

12.
A latent heat thermal energy storage (LHTES) unit can store a notable amount of heat in a compact volume. However, the charging time could be tediously long due to weak heat transfer. Thus, an improvement of heat transfer and a reduction in charging time is an essential task. The present research aims to improve the thermal charging of a conical shell-tube LHTES unit by optimizing the shell-shape and fin-inclination angle in the presence of nanoadditives. The governing equations for the natural convection heat transfer and phase change heat transfer are written as partial differential equations. The finite element method is applied to solve the equations numerically. The Taguchi optimization approach is then invoked to optimize the fin-inclination angle, shell aspect ratio, and the type and volume fraction of nanoparticles. The results showed that the shell-aspect ratio and fin inclination angle are the most important design parameters influencing the charging time. The charging time could be changed by 40% by variation of design parameters. Interestingly a conical shell with a small radius at the bottom and a large radius at the top (small aspect ratio) is the best shell design. However, a too-small aspect ratio could entrap the liquid-PCM between fins and increase the charging time. An optimum volume fraction of 4% is found for nanoparticle concentration.  相似文献   

13.
通过碱处理,优化了硅藻土(DIA)的孔隙结构,提高了孔隙率,增加了石蜡(paraffin)负载量。通过直接浸渍法制备了新型性状稳定的石蜡/碱改性DIA/膨胀石墨(EG-alDIAP)复合材料,并研究了其结构与性能的关系。结果表明,复合相变材料的石蜡负载量从47.4%提高到了61.1%,进而提高了复合材料的储热性能;向改性DIA中添加膨胀石墨(EG)提高了复合材料的传热能力,添加质量分数10%EG时导热系数提高了113%(从0.276 W·m-1·K-1提高到了0.589 W·m-1·K-1)。随着EG含量的升高,复合相变材料的相变潜热有所增加,但化学相容性、稳定性等无明显变化。含10%EG的石蜡/碱改性DIA复合材料具有可靠的储能性能、良好的温度调节性能和蓄放热能力。  相似文献   

14.
王温馨  齐红  丁益民 《化学通报》2021,84(4):330-338
无机水合盐相变储能材料具有相变潜热大、相变温度适中、价格低廉等优点,在太阳能高效利用、跨季节储热采暖、工业余废热利用、轻纺行业等方面具有广阔的应用前景。但过冷、相分离、导热系数低等问题限制了其实际应用。本文介绍了水合盐相变储能材料近年来的研究进展,分析了水合盐相变存在的过冷及相分离现象的原因。通过成核剂法、多孔基体吸附法、微胶囊法等方法可以降低其过冷度;通过增稠剂法、晶形改变剂法等方法可以改善其相分离问题;通过与高导热性的纳米粒子、多孔的高导热基体相复合,可以提高其导热性能。最后,指出了今后水合盐相变储能材料的重点研究方向,可以从与计算化学相结合、寻找合适的无机壳材料以及探究共晶体系等方面继续深入研究。  相似文献   

15.
Graphene oxide (GO) sheets were introduced to stabilize the melted polyethylene glycol (PEG) during the solid-liquid phase change process, which can be used as a smart heat storage system. The structural properties and phase change behaviors of the PEG-GO composites were comprehensively investigated as a function of the PEG content by means of various characterization techniques. The highest stabilized PEG content is 90 wt% in the composites, resulting in a heat storage capacity of 156.9 J g(-1), 93.9% of the phase change enthalpy of pure PEG. Notably, GO has much stronger impact on lowering of the phase change temperature of PEG compared with some other porous carbon materials (activated carbon and ordered mesoporous carbon) due to the unique thin layer structure of GO. Because of the high heat storage capacity and the moderate phase change temperature, the PEG-GO composite is a promising heat energy storage candidate at mild temperature.  相似文献   

16.

This paper presents a unique thermal control strategy to improve the ageing of the battery and to maintain the internal temperature of the battery within the optimum limit of 20 °C–40 °C for electric vehicle (EV) applications. The hybrid EV system encompasses photovoltaic (PV) module, high power density device supercapacitor (SC) and high energy density Li-ion battery (LIB) as an energy storage element. The vehicle dynamics encounter frequent voltage fluctuations in the direct current (DC) bus, which ultimately reduces the lifecycle of the battery and also the heat is generated inside the battery when it is connected in parallel to the DC bus. The frequent charging/discharging of LIB is controlled by the unique thermal control strategy of the hybrid EV system. The DC bus voltage is controlled by the SC bi-directional converter (BDC) where, the battery BDC delivers the essential constant current from the main source (PV) to the DC bus. This unique thermal control strategy supports the distribution of power from the PV/LIB/SC hybrid source system to the EV and also improves the battery life cycle. Due to constant charging/discharging of battery the thermal runaway (TR) problem such as leak, smoke, gas venting, rapid disassembly, flames etc., can be eliminated. Decoupling of load power and battery power comprises the growth in the battery lifecycle and to maintain the optimum internal temperature of the LIB by conditional flow of current through hybrid thermal management system (HTMS). To certify the thermal control strategy and to estimate the performance of HTMS, a simulation of a hybrid source system with vehicle dynamics is performed in MATLAB/Simulink. Numerical analysis of the LIB during constant charging/discharging is performed using ANSYS fluent software to validate the temperature effect of HTMS.

  相似文献   

17.
Paraffin (PA)/expanded graphite (EG) is an important composite phase change material with low cost, high heat storage, good thermal conductivity and cycling stability. Its thermal conductivity needs to be further improved for application in the thermal management system of power lithium-ion batteries. In this paper, copper plated expanded graphite (CPEG) with 3D porous structure was prepared by electroless copper plating method, which was used as thermal conductivity enhancing material to replace part of EG in PA/EG composite materials. For the optimized phase change material composed of 80 %PA-14 %EG-6 %CPEG, the copper content is very low (0.768 wt %), but its thermal conductivity can be significantly improved without loss of latent heat and thermal cycling stability. Its thermal conductivity is increased from 11 times to 16.5 times that of paraffin while compared with the copper-free composite material (80 %PA-20 %EG). The PA/EG/CPEG composite material exhibits good temperature control effect on power lithium-ion batteries.  相似文献   

18.
36 kinds of mixed carbonate molten salts were prepared by mixing potassium carbonate, lithium carbonate, sodium carbonate in accordance with different proportions. The data of melting point and latent heat are measured by the analysis of DSC curves of 36 kinds of salts, which show that the majority of ternary carbonate’s melting points are close at around 400 °C. 24 kinds of eutectic molten salts were selected among 36 kinds of molten salts. With high latent heat, ternary carbonate salt has the potential to be employed for phase change thermal storage. The costs for phase change thermal storage of 24 kinds of carbonate salts are calculated. Finally, 13 kinds of ternary carbonate salts with lower cost for phase change thermal storage are recommended, where there are 6 kinds of mixed carbonates have the considerably larger latent heat of melting.  相似文献   

19.
孟志超  张璐  黄艳凤 《色谱》2018,36(3):216-221
金属有机骨架(MOFs)材料是近几年涌现出的一类新型多功能多孔材料,以金属离子或金属簇为配位中心,与含氧或氮的有机配体通过配位作用形成多孔骨架结构。相比于其他传统无机多孔材料,MOFs具有比表面积高、孔隙率大、热稳定性好和结构与功能多样化的特点,因而被广泛用于气体存储、催化、吸附和分离等领域。MOFs复合材料在样品预处理方面的应用引起了研究者们的极大兴趣和广泛关注。由于MOFs材料和不同功能材料如高分子聚合物、碳基材料以及磁性材料组装复合,使MOFs复合材料的性能优于原来的MOFs材料。综述了近年MOFs复合材料在样品预处理的研究应用,尤其是在固相微萃取、固相萃取以及磁性固相萃取等方面的应用。  相似文献   

20.
Copper foam has recently being applied to replace aluminium as heat sink. In this study, copper foam was manufactured via metal injection molding technique. Copper feedstock were prepared comprising 0 wt.%, 30 wt.% and 40 wt.% of potassium carbonate into copper powder to produce open pore cell structure, which also mixed together with a binder system consisting palm stearin (PS), polyethylene (PE) and stearic acid (SA). The feedstock was then injection molded into tensile shape test piece prior to solvent extracted in heptane prior to sintering using tube furnace at 850oC for 4 hours in nitrogen atmosphere. The sintered samples were immersed in warm water to dissolve the carbonates. Copper foam has successfully manufactured at 850oC for 4 hours in nitrogen atmosphere followed by the dissolution process. The porosity value increased as the addition of potassium carbonate increased from 0 to 40 wt.% which given the highest value of 52.985% porosity and thermal conductivity of 520.46 W/m.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号