首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Several DTA experiments followed by calorimetric works are reviewed here to emphasise the importance of complementary role of both techniques. The thermal analysis is advantageous in the sense that it gives quickly the overall view of thermal behaviour of a material under various conditions. Calorimetric work provides accurate heat capacity data which enable to derive thermodynamic functions including the enthalpy and entropy. The latter quantity is especially important in judging whether the material obeys the third law of thermodynamics. However, calorimetric work leads occasionally to an erroneous conclusion if the work is not preceded by thermal analysis performed under various conditions. Sometimes, quality of information obtained by DTA exceeds that obtained by laborious calorimetry.  相似文献   

4.
Molar heat capacities of acetaminophen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 330 K. A solid-solid transition at 149.96 K was found from the Cp,m-T curve. The polynomial functions of Cp,.m(J K-1 mol-1) vs. T were established on the heat capacity measurements by means of the least square fitting method. Thermal decomposition processes of acetaminophen have been studied by thermogravimetry. And the thermal decomposition kinetics parameters, such as activation energy E, pre-exponential factor A and reaction order n, were calculated by TG-DTG techniques with the Freeman-Carroll method, Kissinger method and Ozawa method. Accordingly the thermal decomposition kinetics equation of acetaminophen is expressed as: dα/dt=2.67·107e-89630/RT(1-α)0.23. The process of fusion has been investigated through DSC. The melting point, molar enthalpy and entropy of fusion are to be (441.89±0.04) K, 26.49±0.44 kJ mol-1 and 59.80±1.01 J K-1 mol-1, respectively.  相似文献   

5.
The research in thermal analysis and calorimetry, conducted by the author over the period 1964 to 1993, is summarised and concisely reviewed. The major investigations have focussed on thermal analysis studies of coordination compounds, particularly the metal dithiocarbamate complexes. A significant solution calorimetric study of some metal dithiocarbamate complexes has also been undertaken. DSC has been applied to determine the sublimation enthalpies of many metal dithiocarbamate and metal pentane-2,4-dionate complexes and solution calorimetry has been applied to study the thermochemistry of the latter group of complexes. Thermal analysis investigations of several inorganic molten salt systems have been initiated. Thermometric titrimetry has been applied to study metal-macrocyclic ligand systems in aqueous media and particularly those systems of environmental significance. Temperature calibration standards for TMA have been proposed and TMA has been applied to study the mechanical properties of several common inorganic compounds. DTA has been applied to study a wide variety of phenols and has subsequently been applied as an analytical technique to determine the components of solid state phenol mixtures. Thermometric titrimetry has been applied to determine the phenolic content of wines. A comprehensive thermal analysis study of Australian brown coal has been undertaken, involving the DSC determination of coal specific energy, a TG/DTA study of the coal pyrolysis and combustion processes and a TG/DTA and EGA study of the cation catalytic effect on the coal pyrolysis process. Thermal analysis and calorimetric techniques have been extensively publicised and promoted by the publication of specialist reviews, the presentation of symposia review papers and the oral presentation of short courses, particularly in the SE Asian region. This review essentially reveals the diversity of possible application of thermal analysis and calorimetric techniques and the primary significance of thermodynamic data in the fundamental rationalisation of chemical phenomena.  相似文献   

6.
The continuous structural changes of Poly(styrene-b-ethylene-butylene-b-styrene) [SEBS] due to the effect of temperature are hard to evaluate using conventional differential scanning calorimetry (DSC). This paper presents an accurate and simple way to evaluate microstructural and glass transitions of SEBS using modulated differential scanning calorimetry (MDSC). The weak crystalline nature of –(CH2-CH2)–n in the ethylene-butylene (EB) block melted around 36 °C. The premature molecular moment and Tg of the styrene block were at 62 °C and 96 °C, respectively. The interfacial region at high temperature was explained with respect to order-order transition (OOT) at 144 °C and a prominent Order-Disorder Transition (ODT) at around 202 °C. Dynamic mechanical thermal analysis (DMTA) and dynamic mechanical rheological testing (DMRT) measurements also revealed that the Tg of the PS transition were consistent at around 96 °C.  相似文献   

7.
8.
This study evaluates the thermal behavior of bagasse malt fresh and its heat capacity by means of calorimetry for samples with different moisture contents (50, 40, 30, 20, and 15 %). Chemical analysis was used to determine the content of volatiles, fixed carbon, and ash. The thermal degradation of malt bagasse presents two mass loss steps attributed to the release of moisture and to the decomposition of organic material. The calorific value of bagasse malt showed variation with moisture reduction as expected. Also showed variation with density. It was found a high percentage of volatile materials and the low percentage of ash and fixed carbon.  相似文献   

9.
The rational and sustainable exploitation of natural resources is one the priority objectives of our consumer society as an unavoidable strategy for survival. In previous articles, research group TERBIPROMAT has established the bases for the elaboration of energy maps of forest biomass. With those data, it is possible to classify the species in terms of their energy content and of their possible application as biofuels following European Norm CEN/TS 14961/2005 on solid biofuels. Main forest species used in this study were Populus and Paulownia. These species have a fast growth and produce big amounts of energetic biomass. To complete this study a comparison with autochthonous forest species, Eucalyptus and Pinus, was made. In this study, a thermogravimetric analysis is employed to qualitative study the resistance to thermal degradation of different forest species. These studies complete those made through static bomb calorimetry, elemental analysis, and different mechanical tests trying to get relationships between thermal behaviour and some physical properties.  相似文献   

10.
11.
Summary The European policy on energy focus on the search for alternative and renewable sources of energy where forest biomass plays a significant role. In this article, calorific values of different kinds of forest residues (leaves, thin branches, barks, etc.) are reported. These values were measured by combustion bomb calorimetry with the objective of understanding, through different risk indices, the behaviour of forest waste in the case of wildfires, and also to study the use of forest residues as raw materials to be used as energy sources. The study was complemented with determination of elemental analysis, flammability using a standard epiradiator, thermodegradation analysis, and different mechanical tests trying to get relationships between thermal behaviour and some physical properties. The study was carried out on Eucalyptus globulus Labill and Pinus pinaster Aiton, because these forest formations have both high economical and ecological interest in Galicia (NW Spain).  相似文献   

12.
The techniques of differential thermal analysis (DTA) and heat flow calorimetry were used to study the thermal behaviour of coffee and chicory products above 20°C. Intensive exothermic reactions were particularly evident when measurements were made under pressure, which prevents vaporization of the water contained in the products, in the temperature domain of interest.  相似文献   

13.
The shelf life of cement and cement-based dry mixtures is often determined by ageing of such materials. The ageing is the result of interactions between cement and other components of cementitious mixtures with moisture as well as with CO2 from the atmosphere. In this work, the ageing behaviour of calcium aluminate cement and its mixtures with additives of microsilica, fluidized catalytic cracking catalyst waste and ground quartz sand were investigated. The ageing was achieved by storing cement and its mixtures in a climatic chamber for 7 and 14 days at 95% relative humidity and 20 ± 1 °C temperature. Applying thermal analysis, XRD analysis as well as scanning electronic microscopy, it was established that hydration of the cement minerals takes place along with carbonation during the ageing process of cement and its mixtures. The quantities of the products formed during ageing and their crystallinity depend on the nature of additives and the duration of ageing. When applying the method of calorimetric analysis, the influence of ageing on the kinetics of hydration of cement and as well as of its mixtures with the additives used in the work has been established.  相似文献   

14.
Dibenzoyl peroxide (BPO) has been widely employed in the petrifaction industry. This study determined the unsafe characteristics of organic peroxide mixed with incompatible materials so as to help prevent runaway reactions, fires or explosions in the process environment. Thermal activity monitor III (TAM III) was applied to assess the kinetic parameters, such as kinetic model, reaction order, heat of reaction (ΔH d), activation energy (E a), and pre-exponential factor (k 0), etc. Meanwhile, TAM III was used to analyze the thermokinetic parameters and safety indices of BPO and contaminated with sulfuric acid (H2SO4) and sodium hydroxide (NaOH). Simulations of a 0.5 L Dewar vessel and 25 kg commercial package in green thermal analysis technology were performed and compared to the thermal stability. From these, the optimal conditions were determined to avoid violent reactions in incompatible materials that cause runaway reactions in storage, transportation, and manufacturing.  相似文献   

15.
16.
The technique of heat flow calorimetry was used to study the thermal behaviour of different milk powders above 20°C. Exothermic reactions of different types occurred when measurements were made with the samples in sealed cells. According to our interpretation of the calorimetric curves, these reactions correspond to: crystallization of amorphous lactose, Maillard reaction between milk proteins and lactose, oxidation of milk fat and decomposition of lactose. Their relative importance is discussed. In addition, the technique of high-pressure differential thermal analysis was used for studying spontaneous ignition and combustion of milk powders, under a large oxygen excess. The role of fat, carbohydrate and protein decomposition is underlined. Some self-ignition temperature values are given.  相似文献   

17.
The new capabilities of AC calorimetry, when working at frequencies above the classical limit were demonstrated. The appropriate frequency range of classical AC calorimetry was substantially enlarged. It was shown that the advanced AC calorimetry can be applied for studying dynamic heat capacity of polymers in the frequency range 0.1–1 Hz. Thus, the processes with characteristic time as short as ca. 5 s was registered. The advanced AC technique was applied for investigation of the melting kinetics in polycaprolactone. It was found that melting in polycaprolactone is related to an activated process. The activation of the melting process after a step heating is described by a stretched exponent and the decay of the melting by only one exponent at short times. The dependencies of the exponent on temperature and thermal treatment were investigated at frequencies in the range 0.1–1Hz and modulation amplitudes 0.005–0.2 K.  相似文献   

18.
The theory, operation and instrumentation of differential thermal analysis (DTA) and differential scanning calorimetry (DSC) are sufficiently well developed to determine melting and boiling points with a high degree of certainty and reproducibility. However, certain precautions must be taken if data of maximum value are to be obtained. Sampling techniques, encapsulation, instrumental parameters and theoretical considerations will be treated in detail.In addition to the very small amount of material required for a melting or boiling point determination, DTA and DSC have other advantages. If certain precautions are observed it is possible to use several equations from classical thermodynamics to obtain absolute purity. A complete Cox Chart of a pure liquid can be obtained and the heat of vaporization determined in a few hours. Complex solid phase diagrams are easily studied. The success or failure of fractionation techniques can be predicted from single thermograms if several phase transitions are present.  相似文献   

19.

Flammability studies are conducted to evaluate the behavior of materials exposed to fire. In this study, microscale combustion calorimetry (MCC) and cone calorimetry methods were applied to acquire the flammability characteristics of red and grey extruded polystyrene (XPS) samples. To understand the effect of changes between parameters, Pearson’s correlation coefficient was used to examine their linear relationships. From the research, moderate and weak correlations were recorded between the total heat release rates from both methods for red and grey XPS, respectively. Plotting peak heat release rate against heat release temperature for MCC and ignition temperature for cone test showed that 25, 35 and 50 kW m?2 incident heat fluxes of the cone test fall within 0.2 K s?1 and 0.5 K s?1 heating rates of MCC. Also, all the MCC parameters except char yield and total heat release presented good correlations with the cone calorimetry flammability characteristics. Hence, MCC could be used in conjunction with cone calorimetry to accurately and reliably assess the flammability of materials.

  相似文献   

20.
Malaria affects over 500 million people worldwide leading to 1–2 million deaths each year, the majority of whom are children. Four Plasmodium species cause malaria in humans. To properly diagnose, and correctly treat malarial infections, accurate diagnosis of infection is required. Proper diagnosis of infection will result in a reduction of morbidity, mortality, and of drug resistant parasites. However, the current tests for malaria diagnosis do not efficiently identify the appropriate human and parasite biomarkers associated with disease. Detection of specific inflammatory mediators such as cytokines associated with malaria pathogenesis will aid the determination of disease progression, disease prognosis, and the early diagnosis of malaria infection. In this study, we used dielectric thermal analysis (DETA), thermogravimetric analysis, and differential scanning calorimetry (DSC) to characterize five human cytokines (IL-1α, IL-2, IL-4, IL-6, and IL-10), to demonstrate how their thermoanalytical properties can be investigated for sensor design. Analysis for DETA was performed at a frequency range of 0.1–300,000 Hz. Permittivity and loss factor measurements were used to calculate tan δ values. Peak frequencies were used to determine dielectric signatures for each cytokine. The peak frequencies were different for each cytokine analyzed. In addition, activation energies were frequency dependent for IL-2 but frequency independent for the remaining four cytokines. Cytokines were also examined using DSC which established variance in heat of crystallization and heat of fusion of solvent among the five cytokines. A noticeable differentiation was observed with IL-1α among the other four cytokines when analyzed using trend analysis. Detection of unique dielectric signals will aid development of sensitive dielectric sensors capable of detecting cytokines in various human samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号