首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructure of magnetic fluid produced on the basis of kerosene with oleic acid as a stabilizer is studied experimentally. An analytical procedure based on the known dependence of the time of Brownian relaxation of the magnetic moment of the colloidal particle on its size and the expansion of a low-frequency spectrum of dynamic susceptibility into the series of Debye functions is used. Magnetic susceptibility is measured at frequencies from 10 Hz to 100 kHz and temperatures from 225 to 360 K for colloidal solutions with the volume fraction of magnetite from 0.08 to 0.17. The clusters with uncompensated magnetic moments and sizes varying from 50 to 70 nm that are three-or fourfold larger than the mean diameter of a single colloidal particle are found. It is revealed that characteristic sizes of clusters are virtually independent of temperature and concentration of colloidal particles. The contribution of clusters to the equilibrium susceptibility of magnetic fluid grows exponentially with decreasing temperature, being manyfold larger at low temperatures than that of single particles. The obtained temperature dependence of equilibrium susceptibility is compared with that predicted from current theoretical models.  相似文献   

2.
Generation of the pulsed magnetic fields that are 5–6 orders of magnitude higher than the geomagnetic field requires switching of high pulsed currents. As a result, the occurrence of the Joule heating in the inductors limits the possible biological applications of the pulsed magnetic fields. This work is focused on the investigation of the generated Joule heating inside the inductors of different shapes. The analysis of the Joule heating influence on the vitality of biological objects during magnetic permeabilization is presented. The biological objects that are used in the study are the pathogenic fungi Candida albicans and Trichophyton rubrum, which are the common cases for human infections. The finite element method analysis of the pulsed inductors and the experimental results with the selected pathogenic fungi are overviewed. The limitations of the magnetic permeabilization technique due to the generated Joule heating are identified.  相似文献   

3.
Detailed studies of the structures, magnetic properties and photodimerization of a series of formato-bridged MOFs with the general formula M2(HCOO)3(4,4′-bpe)3(H2O)3(X) (4,4′-bpe = 4,4′-bipyridylethylene, M = Mn (1-X-), X- = ClO4-, NO3-, BF4-, I-, Br-; M = Co (2-X-), X- = ClO4-, NO-3; M = Zn (3-X-), X- = NO3-) were reported. Careful magnetic measurements on an ori- ented single crystal of 1-ClO4- determined the spin-flop magnetic phase diagram and some intrinsic parameters, such as the intralayer coupling J, the anisotropy field HA and the exchange field HE. Different anions can remarkably tune the magnetic properties of 1-X-, especially the critical fields of the spin-flop transition. Compound 2-ClO4- remained paramagnetic down to 2 K.  相似文献   

4.
As is well known, controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip is significant and has many applications in bioanalysis based on magnetic beads. However, it is a challenge to tailor the magnetic field introduced by external permanent magnets or electromagnets on the micrometer scale. Here, we demonstrated a simple approach to controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip by nickel patterns encapsulated in a thin poly(dimethylsiloxane) (PDMS) film under the fluid channel. With the precisely controlled magnetic field, magnetic bead patterns were convenient to generate. Moreover, two kinds of fluorescent magnetic beads were patterned in the microfluidic channel, which demonstrated that it was possible to generate different functional magnetic bead patterns in situ, and could be used for the detection of multiple targets. In addition, this method was applied to generate cancer cell patterns.  相似文献   

5.
6.
The paper describes the effect of an oscillating magnetic field (OMF) on the morphology and release properties of collagen gels containing magnetic nanoparticles and microparticles and fluorescent drug analogues. Collagen gels were prepared through fibrillogenesis of collagen in the presence of iron oxide magnetic particles averaging 10 nm or 3 mum in diameter and rhodamine-labeled dextran (Dex-R) of molecular weights between 3000-70 000 g/mol. Dextran molecules effectively simulate protein-based drugs, since they have similar molecular weights and dimensions. The paper discusses the effect of an OMF on the release properties of the gels and proposes an empirical model to predict the release rate. It also demonstrates the self-repair capability of collagen gels following the structural damage caused by an OMF.  相似文献   

7.
The effect of a uniform magnetic field with flux density up to 1 T on the electrodeposition of Fe from sulphate electrolyte has been investigated under different field configurations relative to the electrode surface. Voltammetric and chronoamperometric experiments have been carried out coupled with an electrochemical quartz crystal microbalance for in situ mass change measurements. The structure and morphology of the deposited films were determined by scanning electron microscopy, atomic force microscopy and X-ray diffraction measurements. Results show that, when the magnetic field is applied parallel to the electrode surface, the limiting current density and the deposition rate are increased due to the magnetohydrodynamic effect. The nucleation process is also affected in parallel configuration; the current density of the maximum on the chronoamperograms is decreased, and an additional nucleation step might be observed. This effect is attributed to the hydrodynamic response of the electrochemical system. No significant influence on the electrochemical reaction was observed when a magnetic field was applied perpendicular to the electrode. But in this configuration, the morphology of deposited layers is changed by the magnetic field. The morphology changes are discussed. No effect of the magnetic field on the crystallographic structure was observed.  相似文献   

8.
The Hartree-Fock equations for a periodic polymer chain in the presence of a static magnetic field are formulated. The cases of homogeneous and inhomogeneous static field are treated separately. In the case where the magnetic field strength is dependent on the coordinate z (the direction of the main axis of the polymer), the periodic symmetry of the polymer breaks down. For the case of weak z dependence of the magnetic field the chain can be divided into segments, each one characterized by an averge field, and the interface of these segments can be treated with the help of two Dyson equations (one for each segment at the interface).  相似文献   

9.
The aggregation stability of a magnetic colloid at an excess content of a surfactant is studied. The presence of aggregates with a nonzero magnetic moments is revealed; on this basis, magnetic ordering of magnetic particles in them is regarded as possible. The possible mechanisms of the formation of periodic structural lattices appearing under the action of a direct electric field on the magnetic colloid are studied. A fundamental difference between the structurization processes induced by a surfactant and by an electric field is noted: structurization processes occurring at the excess of surfactant may be associated with the flocculation, whereas such processes proceeding under the effect of an electric field may be due to phase separation of the colloid.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 2, 2005, pp. 161–166.Original Russian Text Copyright © 2005 by Dikanskii, Vegera, Zakinyan, Nechaeva, Gladkikh.  相似文献   

10.
The present paper concerns the influence of the magnetic field on the permeability of a membrane of solid cylindrical particles covered with porous layer. Here, we have considered the flow along the axis of cylinder and the alignment of uniform magnetic field is assumed to be perpendicular to the axis. The Brinkman equation is used for flow through porous region and Stokes equation is used for flow through clear fluid region. To model flow through assemblage of particles, cell model technique has been used i.e. the porous cylindrical shell is assumed to be confined within a hypothetical cell of same geometry. The stress jump condition has been employed at the fluid-porous interface and all four alternative conditions Happel, Kuwabara, Kvashnin and Mehta-Morse/Cunningham are used at the hypothetical cell. Effect of the Hartmann number on the hydrodynamic permeability of the membrane is discussed.  相似文献   

11.
With an AXB centrosymmetrical model system, the qualitative relationship was demonstrated among the coupling constant and the fourth power of S13, which is the overlap integral between the orbitals of the bridging group and the symmetrical combination of the singly occupied orbitals of magnetic centers in the local ligand field. By using density functional theory and the broken symmetry approach HHeH, [HFH]? and OTi2Cl4 systems were calculated to inspect the above conclusion. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem 88: 275–279, 2002  相似文献   

12.
13.
Exchange coupling across the cyanide bridge in a series of novel cyanometalate complexes with CuII-NC-MIII (M = Cr and low-spin Mn, Fe) fragments has been studied using the broken-symmetry DFT approach and an empirical model, which allows us to relate the exchange coupling constant with sigma-, pi-, and pi*-type spin densities of the CN- bridging ligand. Ferromagnetic exchange is found to be dominated by pi-delocalization via the CN- pi pathway, whereas spin polarization with participation of sigma orbitals (in examples, where the dz2 orbital of MIII is empty) and pi* orbitals of CN- yields negative spin occupations in these orbitals, and reduces the CuII-MIII exchange coupling constant. When the dz2 orbital of MIII is singly occupied, an additional positive spin density appears in the sigma(CN) orbital and leads to an increase of the ferromagnetic Cu-NC-M exchange constant. For low-spin [MIII(CN)6]3- complexes, the dz2 orbital occupancy results in high-spin metastable excited states, and this offers interesting aspects for applications in the area of molecular photomagnetism. The DFT values of the exchange coupling parameters resulting from different occupations of the t2g orbitals of low-spin (t2g5) FeIII are used to discuss the effect of spin-orbit coupling on the isotropic and anisotropic exchange coupling in linear Cu-NC-Fe pairs.  相似文献   

14.
罗树常 《分子科学学报》2020,(1):62-68,I0005
基于DFT-BS方法,选择不同的泛函方法和基组,研究anti,anti甲酸桥联双核铜配合物的磁学性质.结果表明,在B3P86/TZV水平计算得到顺磁中心Cu(Ⅱ)离子间磁耦合常数为-55.63 cm^-1,与实验值-55.60 cm^-1最接近,可准确描述甲酸桥联双核铜配合物的磁学性质.顺磁中心Cu(Ⅱ)与甲酸根桥联配体间有较强的轨道作用,其磁轨道主要来源于Cu(Ⅱ)离子的3dyz轨道、桥联配体甲酸根离子的离域π键,顺磁中心Cu(Ⅱ)离子为自旋离域机理.在不同桥联模式的甲酸桥联双核铜配合物中,随顺磁中心Cu(1)自旋密度增加,Cu(Ⅱ)离子间的反铁磁性贡献逐渐增加,其磁耦合常数J值逐渐减小.  相似文献   

15.
We review the problem of spin decoherence of magnetic atoms deposited on a surface. Recent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures. Transport pump and probe techniques with spin polarized tips permit measuring the spin relaxation time T1, while novel demonstration of electrically driven STM single spin resonance has provided a direct measurement of the spin coherence time T2 of an individual magnetic adatom. Here we address the problem of spin decoherence from the theoretical point of view. First we provide a short general overview of decoherence in open quantum systems and we discuss with some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms. Second, we address the physical mechanisms that allows probing the spin coherence of magnetic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on a surface, most notably, Kondo interaction, but also spin–phonon coupling and dephasing by Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum technologies.  相似文献   

16.
The mechanical properties of new magnetic composite materials were studied. The above materials represent rubbery silicon matrices filled with magnetic microparticles of metallic iron or magnetite. In homogeneous magnetic fields with an intensity of up to 0.4 T, the shear modulus of the composites was abnormally high (up to 10 000%). The variation of elastic properties of new materials on the type and volume content of the magnetic filler was investigated. In the presence of a sufficiently strong magnetic field, the above composites were shown to behave as elastoplastic materials with strengthening.  相似文献   

17.
The spin dynamics of the radical pair generated from the photocleavage reaction of (2,4,6-trimethylbenzoyl)diphenylphosphine oxide (TMDPO) in micellar solutions was studied by the time-resolved magnetic field effect (MFE) on the transient absorption (TA) and by a novel technique, absorption detected switched external magnetic field (AD-SEMF). Thanks to the large hyperfine coupling constant (A = 38 mT), a characteristic negative MFE on the radical yield was observed at a magnetic field lower than 60 mT whereas a positive effect due to the conventional hyperfine (HFM) and relaxation mechanisms (RM) was observed at higher magnetic field. The negative effect can be assigned to the mechanism "so-called" low field effect (LFE) mechanism and has been analyzed thoroughly using a model calculation incorporating a fast spin dephasing process. The time scale of the spin mixing process of LFE studied by AD-SEMF is shorter than the lifetime of the recombination kinetics of the radical pair. These results indicate that the LFE originates from the coherent spin motion. This can be interfered from the fast spin dephasing caused by electron spin interaction fluctuations.  相似文献   

18.
The present work studies Kelvin-Helmholtz waves propagating between two magnetic fluids. The system is composed of two semi-infinite magnetic fluids streaming throughout porous media. The system is influenced by an oblique magnetic field. The solution of the linearized equations of motion under the boundary conditions leads to deriving the Mathieu equation governing the interfacial displacement and having complex coefficients. The stability criteria are discussed theoretically and numerically, from which stability diagrams are obtained. Regions of stability and instability are identified for the magnetic fields versus the wavenumber. It is found that the increase of the fluid density ratio, the fluid velocity ratio, the upper viscosity, and the lower porous permeability play a stabilizing role in the stability behavior in the presence of an oscillating vertical magnetic field or in the presence of an oscillating tangential magnetic field. The increase of the fluid viscosity plays a stabilizing role and can be used to retard the destabilizing influence for the vertical magnetic field. Dual roles are observed for the fluid velocity in the stability criteria. It is found that the field frequency plays against the constant part for the magnetic field.  相似文献   

19.
In this paper, it is shown that the coagulation of dispersions of weakly magnetic mineral ultrafines (such as hematite and chromite) in an external magnetic field can be described theoretically by invoking interparticle forces. Essentially, coagulation occurs when the short-range London—van der Waals interactions and the long-range magnetic forces outweigh the stabilizing electric double layer repulsion. From classical colloid chemistry theory, we have calculated the various components of the potential energy for different-sized particles at a series of ionic strengths and magnetic field intensifies. Principles governing the stability of the suspensions were derived and the computations lead to the establishment of criteria which can be used to predict the stability of the suspensions of weakly magnetic oxide mineral ultrafines in a “wet magnetic separation process”.

Experimentally, the magnetic-field induced coagulation of ultrafines of natural hematite and chromite in aqueous suspensions at moderate ionic strength was investigated using a laboratory-scale electromagnetic solenoid. The experimental results relate the coagulation process (as determined by magnetosedimentation analysis) to particle size, slurry pH and the external magnetic field. In the magnetic fields, maximum coagulation occurred near the pH of the point of zero charge (pHPZC) of the minerals (where the electrostatic double layer repulsion was reduced to a minimum) enabling the particles to enter the “primary minimum” energy sink. In contrast, in cases where the electrostatic repulsion was not suppressed, the long-range magnetic forces enabled coagulation to occur in the “secondary minimum”. This caused the formation of chains which appeared to be relatively stable at enhanced rates of settling. The experimental results could be interpreted from a theoretical analysis of the interparticle forces controlling the process.  相似文献   


20.
The magnetic properties of 10 nm diameter surfactant-coated cobalt (Co) nanoparticles in 1,2-dichlorobenzene (DCB) are investigated by a series of sequential magnetic moment (m) vs temperature (T) measurements. A rapid rise in magnetic moment around 250 K during warming and an abrupt drop at 234 K during cooling are observed when a nonsaturating external magnetic field is applied. Differential scanning calorimetry (DSC) measurements demonstrate that the rapid rise and abrupt drop in magnetization are associated with the melting and freezing of the solvent. Magnetic measurements of these Co nanoparticles in DCB are also used to probe their aging over a period of 70 days. The saturation magnetic moment of Co nanoparticles in DCB stored in air at room temperature decreases by nearly 40% over 70 days. Transmission electron microscopy (TEM) characterizations are reported to show the time evolution in the size, shape, and crystalline structures of DCB-immersed nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号