首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies suggest that soot formed in premixed flat flames can contain a substantial amount of aliphatic compounds. Presence of these compounds may affect the kinetics of soot mass growth and oxidation in a way that is currently not understood. Using an infrared spectrometer coupled to a microscope (micro-FTIR), we examined the composition of soot sampled from a set of ethylene-argon-oxygen flames recently characterized (A. D. Abid, et al. Combust. Flame, 2008, 154, 775-788), all with an equivalence ratio Φ=2.07 but varying in maximum flame temperatures. Soot was sampled at three distances above the burner surface using a probe sampling technique and deposited on silicon nitride thin film substrates using a cascade impactor. Spectra were taken and analyses performed for samples collected on the lowest five impactor stages with the cut-off sizes of D(50)=10, 18, 32, 56 and 100 nm. The micro-FTIR spectra revealed the presence of aliphatic C–H, aromatic C–H and various oxygenated functional groups, including carbonyl (C=O), C–O–C and C–OH groups. Spectral analyses were made to examine variations of these functional groups with flame temperature, sampling position and particle size. Results indicate that increases in flame temperature leads to higher contents of non-aromatic functionalities. Functional group concentrations were found to be ordered as follows: [C=O]<[C–O]<[aliphatic C–H]. Aliphatic C–H was found to exist in significant quantities, with very little oxygenated groups present. The ratio of these chemical functionalities to aromatic C–H remains constant for particle sizes spanning 10-100 nm. The results confirm a previous experimental finding: a significant amount of aliphatic compounds is present in nascent soot formed in the flames studied, especially towards larger distances above the burner surface.  相似文献   

2.
Samples were drawn from sooting premixed low-pressure ethylene oxygen flames and investigated through photoionization mass spectrometry using either KrF or ArF lasers as the radiation source. With the former, mass spectra were obtained as described in the literature and characterized through a series of signal groups, one for each C-number and extending to about m/z 1000, assigned as a PAH series. When the ArF laser was used the same series was observed with a somewhat higher sensitivity. In addition, a new series was observed overlaid on the PAH series and starting at about m/z 680. The new series exhibited abundant ions and it completely dominated the spectrum beyond m/z 1000. This series was identified as being the spectrum of soot precursor particles. Through measurement of the ionization order it was concluded that at least two photons are needed for ionization of PAHs whereas the particles need only one photon. Consequently, they can be measured with high sensitivity when an ArF laser is used as the radiation source. Furthermore, the discrimination of soot precursor molecules and soot precursor particles becomes possible through photoionization and this enables an improved understanding of the mass spectra. This should allow a particle growth mechanism to be deduced in the near future.  相似文献   

3.
The OCM reaction in the presence of HCl over NaCl−MnO/H−ZSM catalyst at 750°C has been studied. Effect of HCl partial pressure on the CH4 conversion and selectivities to principal products, also on the time-on-stream of catalyst has been examined. Addition of HCl into initial methane-oxygen mixture can increase selectivity to C2+ formation and ethene selectivity, in particular. It seems that the time-on-stream of this catalyst is nearly 35–40 h in the presence of HCl.  相似文献   

4.
We used a Combustion Aerosol Standard burner unit that affords controlled and adjustable flame conditions, and adapted it for use with liquid fuel. We prepared samples of hexane soot under different well‐defined combustion conditions, and probed the chemical properties of hexane soot by using its heterogeneous interaction with NO2 in a Knudsen flow reactor. Soot generated under conditions of fuel to oxygen ratio near stoichiometry (λ = 0.82) produced HONO as the main product. Yields of HONO decreased for soot generated under lean conditions (λ = 0.16). Finally, NO was the principal product of the reaction for soot generated under extremely lean conditions (λ = 0.09) corresponding to the lower flammability limit. We may conclude that the combustion conditions determined surface properties gauged by the heterogeneous NO2–soot interaction. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 620–631, 2002  相似文献   

5.
The results of experiments on the isothermic pyrolysis of acetylene, benzene, and diacetylene in a flow reactor near a low-temperature threshold of soot formation are presented. Diacetylene showed a much higher ability to form soot, coke, and tar than the other hydrocarbons. The threshold temperature of soot formation from diacetylene (800 K) was found to be lower than the threshold temperatures for benzene (1230 K) and acetylene (1200 K) for the same pyrolysis time (0.17 s) and equal hydrocarbon concentrations (on the basis of C atoms). The induction periods of soot formation for acetylene and benzene at 1100–1200 K, which were estimated from experiments, correlated well with literature data extrapolated from the high-temperature region. Invisible soot particles (0.3-0.5 Μm) and particles at different steps of carbonization were found among the products of low-temperature pyrolysis. Experimental data were analyzed and compared within the framework of two soot formation theories presented in the literature (the “acetylene” and “aromatic” theories). The contribution of the process of polyyne polymerization in a gas phase to the formation of a soot aerosol is discussed.  相似文献   

6.
G. R. Clemo 《Tetrahedron》1970,26(24):5845-5846
Three nitro-phenolic compounds have been isolated from coal soot and identified.  相似文献   

7.
G.R. Clemo 《Tetrahedron》1973,29(23):3987-3990
Coal soot has been found to contain a complex mixture of aromatic bases which with one exception fit the three homologous series of pyridine, quinoline and indoline bases.  相似文献   

8.
A novel form of nano-sized carbon rods decorated with monodispersed iron particles in a size range of 30-50 nm on their surface is successfully synthesized by arcing discharge of composite electrodes made from iron particles and fullerene soot; this will be of potential as catalyst for hydrogenation reactions.  相似文献   

9.
Hessler JP  Seifert S  Winans RE  Fletcher TH 《Faraday discussions》2001,(119):395-407; discussion 445-59
The high spectral intensity of X-rays produced by the undulator at the Basic Energy Sciences Synchrotron Radiation Center of Argonne's Advanced Photon Source has allowed us to perform small-angle X-ray scattering (SAXS) studies of the initial distribution of soot particles formed by various fuels. SAXS provides an in situ probe of the morphology of soot in the region between 1 and 100 nm and complements the ex situ technique of electron microscopy. The basic aspects of SAXS and its potential are illustrated with measurement on a laminar flame of acetylene in air. The more complex fuel toluene has been studied in a flat-flame burner that supports a CH4/H2/air or CO/H2/air diffusion flame stabilized by N2 co-flow. This burner produces a nearly constant temperature region above the flame where the pyrolysis and combustion of the heavier fuels occurs. Kinetic information is obtained by performing measurements of the scattered intensity profile as a function of the height above the burner. These profiles have been reduced to give the mean radius and dispersion of a distribution of spherical particles. Mean radii between 0.8 and 18 nm have been observed. The smallest of these is a factor of ten smaller than previously detected with Lorentz-Mie scattering. Near 1550 K, the soot distribution found in toluene shows a distinct step behavior that is consistent with model calculations.  相似文献   

10.
The interaction of water with laboratory soots possessing a range of properties relevant for atmospheric studies is examined by two complementary methods: gravimetrical measurement of water uptake coupled with chemical composition and porosity analysis and HTDMA (humidified tandem differential mobility analyzer) inference of water uptake accompanied by separate TEM (transmission electron microscopy) analysis of single particles. The first method clarifies the mechanism of water uptake for bulk soot and allows the classification of soot with respect to its hygroscopicity. The second method highlights the dependence of the soot aerosol growth factor on relative humidity (RH) for quasi-monodisperse particles. Hydrophobic and hydrophilic soot are qualitatively defined by their water uptake and surface polarity: laboratory soot particles are thus classified from very hydrophobic to very hydrophilic. Thermal soot particles produced from natural gas combustion are classified as hydrophobic with a surface of low polarity since water is found to cover only half of the surface. Graphitized thermal soot particles are proposed for comparison as extremely hydrophobic and of very low surface polarity. Soot particles produced from laboratory flame of TC1 aviation kerosene are less hydrophobic, with their entire surface being available for statistical monolayer water coverage at RH approximately 10%. Porosity measurements suggest that, initially, much of this surface water resides within micropores. Consequently, the growth factor increase of these particles to 1.07 at RH > 80% is attributed to irreversible swelling that accompanies water uptake. Hysteresis of adsorption/desorption cycles strongly supports this conclusion. In contrast, aircraft engine soot, produced from burning TC1 kerosene in a gas turbine engine combustor, has an extremely hydrophilic surface of high polarity. Due to the presence of water soluble organic and inorganic material it can be covered by many water layers even below water saturation conditions. This soot demonstrates a gradual diameter growth factor (D(wet)/D(dry)) increase up to 1.22 at 93% relative humidity, most likely due to the presence of single particles with water soluble material heterogeneously distributed over their surface.  相似文献   

11.
This experiment involving diesel fuel pyrolysis was performed to study the process of soot formation without oxidation. The effects of temperature, residence time, and lubricating oil presence on soot formation were investigated through measurement of particle size distribution, morphology, and C/H ratio as well as through thermal analysis. The results show that the formation of soot during diesel pyrolysis depended strongly on both temperature and residence time. The critical temperature for the creation of soot with a primary particle diameter of 20 nm was about 1100 °C. Greater temperatures and residence times resulted in diesel soot particles that were more mature, i.e., with a higher C/H ratio, larger particle size, and higher ignition temperature. The carbonization of diesel soot through pyrolysis was also weakly affected by the addition of 5% lubricating oil to the diesel fuel. The results of this experiment provide information for modeling the formation of diesel soot without oxidation as well as for developing soot generators for after-treatment systems.  相似文献   

12.
13.
Kinetics of soot formation is studied in tetrachloromethane pyrolysis behind shock waves. The time dependences of macrokinetic characteristics of soot particle growth (the induction period, the soot yield, and the apparent rate constant of soot particle growth) are determined. Based on the experimental data, the quantitative model of soot formation is developed for tetrachloromethane pyrolysis behind shock waves. Special attention is paid to the thermal effects in CC14 pyrolysis.  相似文献   

14.
We have investigated the heterogeneous interaction between a number of carboxylic acids and soot generated from different fuel sources and formation mechanisms. A low-pressure fast flow reactor in conjunction with ion drift-chemical ionization mass spectrometry detection was employed to study uptake of monocarboxylic (benzoic, oleic, and steric) and dicarboxylic (glutaric, maleic, oxalic, and phthalic) acids on deposited soot surfaces formed by combustion of methane, propane, and kerosene. Most acids exhibited irreversible uptake on the soot surfaces and the uptake coefficient was measured in the range of 9 x 10(-4) to 1 x 10(-1) estimated based on the geometric surface areas. Brunauer, Emmett, and Teller surface areas of the deposited soot surfaces were measured and the soot bulk and surface chemical compositions were evaluated with Fourier transform infrared spectroscopy and attenuated total reflection spectroscopy. Plausible uptake mechanisms were discussed on the basis of the measured soot physiochemical properties by comparing the mono and dicarboxylic acids.  相似文献   

15.
Summary Concentrations of 20 trace and minor components, such as metals, nitrogen and sulphur, were determined in representative diesel soot samples corresponding to various driving patterns of an old and a new type of Mercedes-Benz diesel engine for passenger cars. The samples were analysed by instrumental neutron activation analysis, and after decomposition, by flame and graphite furnace atomic absorption spectrometry. The content of sulphur was determined by a method based on the formation of hydrogen sulphide and precipitation micro-titrimetry. The concentrations of the elements Au, La, Sb, Sc, and V were at the sub-g/g level; As, Ba, Cd, Co, Cr, Mn, Ni, and Se were at the lower g/g level; and Ca, Cu, Fe, N, Na, Pb, S, and Zn ranged from the upper g/g to lower percent levels. The emission of several elements was likely the result of different factors such as utilization of organometallic additives (Ca, Na, Zn) in diesel fuel or lubrication oil, contamination of diesel fuel by alkyllead compounds, wear and corrosion of the engine and exhaust system parts. The concentration of elemental components in diesel soot, generally, varied with operating conditions, which affected fuel and oil consumption, combustion efficiency (soot production), and mechanical strain. Permanent address: Czechoslovak Academy of Science, Institute of Analytical Chemistry, Vevei 96, CS-61142 Brno, SFR  相似文献   

16.
Nitrogen dioxide is a regulated pollutant, which is measured routinely. Since it can be formed during combustion processes, it is often measured in the presence of soot. This study investigates the possible artifact formation due to the interaction of soot and NO2 in the sampling lines and instrument prefilters. The transfer of varying NO2 concentrations through filters and tubes coated with different kinds of soot was investigated by using a dedicated photoacoustic soot and NO2 analyzer (TwinPAS). The effects of flow rate, temperature, relative humidity, tubing respectively filter material, soot reactivity, and passivation on the NO2 measurement artifacts have been investigated. We found significant lags (up to 2 min) of the NO2 transfer as well as total NO2 losses of up 10 %.  相似文献   

17.
The most relevant information about the different active phases that have been studied for the catalytic combustion of soot is reviewed and discussed in this article. Many catalysts have been reported to accelerate soot combustion, including formulations with noble metals, alkaline metals and alkaline earth metals, transition metals that can accomplish redox cycles (V, Mn, Co, Cu, Fe, etc.), and internal transition metals. Platinum catalysts are among those of most interest for practical applications, and an important feature of these catalysts is that sulphur-resistant platinum formulations have been prepared. Some metal oxide-based catalysts also appear to be promising candidates for soot combustion in practical applications, including ceria-based formulations and mixed oxides with perovskite and spinel structures. Some of these metal oxide catalysts produce highly reactive active oxygen species that promote efficient soot combustion. Thermal stability is an important requirement for a soot combustion catalyst, which precludes the practical utilisation of several potential catalysts such as most alkaline metal catalysts, molten salts, and metal chlorides. Some noble metal catalysts are also unstable due to the formation of volatile oxides (ruthenium, iridium, and osmium).  相似文献   

18.
《Mendeleev Communications》2022,32(5):700-702
Kinetic modeling of pyrolysis of acetylene diluted with argon showed a strong influence of small additives of oxygen on the routes of formation of soot nuclei. The influence of oxygen on various channels of formation and consumption of propargyl radicals C3H3, which are important precursors of soot formation, as well as the fundamental possibility of controlling the process of soot formation and its properties are considered.  相似文献   

19.
In order to study the condensation activity of carbon-containing aerosols, the kinetics of sorption of saturated water vapors was investigated on model soot samples modified by the deposition of organic and inorganic substances corresponding to different classes of compounds contained in solid state products of natural fuel combustion. The values of limiting water sorption were determined and rate constants were calculated. It was established that the limiting sorption on graphitized thermal soot (GTS) modified by acids and salts (e.g., phenol, benzoic, phthalic, trimellitic, and sulfuric acids; sodium benzoate; and ammonium sulfate) per modifier molecule rose by two orders of magnitude, relative to the initial carbon matrix, and ranged from ≈2 to 200 molecules. It was found that hydrophilic centers covalently bound to the surface of furnace black (FB) and its oxidized form are shielded to a considerable degree as a result of modification by hydrophobic substances (hexadecane, octacosane, anthracene, and stearic acid). We conclude that hexadecane modification of GTS containing hydrophilic centers not bound to its surface (sulfuric acid and ammonium sulfate molecules) have no effect on the sorption of saturated water vapors.  相似文献   

20.
Large uncertainty among the measured uptake coefficients of O(3) on soot highlights the importance of the sources and chemical structures of soot samples in this reaction. Soot samples with different microstructures were prepared by combusting n-hexane under controlled conditions. Their reactivities to O(3) were further investigated using in situ Raman spectroscopy. The fuel∕oxygen ratio in the combustion experiments not only affected the diameter of the primary particles, but also influenced the micro-chemical structure of soot. Average diameters of soot particles decreased with the decreasing fuel∕oxygen ratio. Compared to the "fuel-rich" flame soot, the "fuel-lean" flame soot showed lower structural uniformity with higher disordered carbon content at the graphene layer edges (D1 band) and the surface graphene layers (D2 band) and the amorphous carbon content (D3 band). This disordered carbon was identified as the reactive component for the ozonization of both the "fuel-rich" and "fuel-lean" flame soot samples. The kinetics study demonstrated that the disordered carbon at the surface graphene layers was more active than that at the graphene layer edges in one sample, and the reactivity of these two microstructures types to O(3) in the "fuel-rich" flame soot was higher than that in the "fuel-lean" flame soot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号