首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Thermal Analysis and Calorimetry - A series of novel polymeric form-stable phase change materials (FSPCMs) composed of poly(trimethylolpropane trimethacrylate-stearyl methacrylate) (PTS)...  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - The polyethylene glycol/wood-flour (PEG/WF) composites were synthesized as novel form-stable phase change materials (PCMs) using PEG as phase change...  相似文献   

3.
4.
Three phase change paraffinic materials (PCMs) were thermophysically (phase-transition temperatures, latent heat, heat capacity at constant pressure, density, and thermal conductivity) investigated in order to be used as latent heat storage media in a pilot plant developed in Plovdiv Bulgaria. Raman structural investigation probes aliphatic character of the E53 sample, while the E46 and ECP samples contain also unsaturated components due to their Raman features within 1,500–1,700 cm?1 range. Orthorhombic structure of the three PCMs was evidenced by the Raman modes at the 1,417 cm?1. The highest latent heat value, ΔH, of phase transitions among the three materials was represented by summation of a solid order–disorder, and melting latent heat was encountered by the E53 paraffin, i.e., 194.32 J g?1 during a μ-DSC scan of 1 °C min?1. Conversely, the ECP composite containing ceresin component shows the lowest latent heat value of 143.89 J g?1 and the highest thermal conductivity of 0.46 W m?1 K?1 among the three phase change materials (PCMs). More facile melt-disordered solid transition with the activation energy of 525.45 kJ mol?1 than the lower temperature transition of disorder–order (E a of 631.73 kJ mol?1) during the two-step process of solidification for the E53 melt are discussed in terms of structural and molecular motion changes.  相似文献   

5.
Journal of Thermal Analysis and Calorimetry - Leakage issue and low thermal conductivity largely restrict feasibility of fatty acid in real application of thermal energy storage (TES). In this...  相似文献   

6.
《中国化学快报》2021,32(12):3825-3832
n-Alkanes have been widely used as phase change materials (PCMs) for thermal energy storage applications because of their exceptional phase transition performance, high chemical stability, long term cyclic stability and non-toxicity. However, the thermodynamic properties, especially heat capacity, of n-alkanes have rarely been comprehensively investigated in a wide temperature range, which would be insufficient for design and utilization of n-alkanes-based thermal energy storage techniques. In this study, the thermal properties of n-alkanes (C18H38-C22H46), such as thermal stability, thermal conductivity, phase transition temperature and enthalpy were systematically studied by different thermal analysis and calorimetry methods, and compared with previous results. Thermodynamic property of these n-alkanes was studied in a wide temperature range from 1.9 K to 370 K using a combined relaxation (Physical Property Measurement System, PPMS), differential scanning and adiabatic calorimetry method, and the corresponding thermodynamic functions, such as entropy and enthalpy, were calculated based on the heat capacity curve fitting. Most importantly, the heat capacities and related thermodynamic functions of n-heneicosane and n-docosane were reported for the first time in this work, as far as we know. This research work would provide accurate and reliable thermodynamic properties for further study of n-alkanes-based PCMs for thermal energy storage applications.  相似文献   

7.
Phase change materials(PCMs) have attracted much attention in the field of solar thermal utilization recently, due to their outstanding thermal energy storage performance. However, PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature, rendering thermal energy storage and release uncontrollable, thus hindering their practical application in time and space. Herein, we developed erythritol/sodium carboxymethylcellulose/tetrasodium eth...  相似文献   

8.
Wen  Ruilong  Jia  Puqi  Huang  Zhaohui  Fang  Minghao  Liu  Yangai  Wu  Xiaowen  Min  Xin  Gao  Wei 《Journal of Thermal Analysis and Calorimetry》2018,132(3):1753-1761
Journal of Thermal Analysis and Calorimetry - Bone char (BC) is a promising porous material that can be used for preparing a form-stable composite phase change material (PCM). In this paper,...  相似文献   

9.
In this study, stearic acid/silica phase change composites were prepared by the sol-gel method using stearic acid as phase change materials (PCMs). The effects of mass fraction of stearic acid were comprehensively investigated. The structures and thermal properties of the obtained composites were characterized by various methods, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), leakage tests, and thermogravimetry analysis (TG). The results indicated that composite containing 76% stearic acid had the best thermal properties and low mass leakage, making 76% stearic acid as the maximum content that silica matrix could protect in the composites. The latter was further confirmed by morphological analyses of the silica matrix. Silica matrix exhibited spherical particle clusters, following big–small–big–small size pattern as stearic acid rose. The composite with 76% stearic acid was at the key point of change in particle size. These findings look promising for future to prepare silica-based phase change composites with good thermal properties easily.  相似文献   

10.
Form-stable phase change materials (PCMs) with high thermal conductivity are essential for thermal energy storage systems, which in turn are indispensible in solar thermal energy applications and efficient use of energy. In this paper, a new palmitic acid (PA)/polyaniline (PANI) form-stable PCMs were prepared by surface polymerization. The highest loading of PA in the form-stable PCMs was 80 mass% with the phase change enthalpy (ΔH melting) of 175 J g?1. Copper nanowires (Cu NWs) were introduced to the form-stable PCM by mixing the Cu NWs with PA and ethanol prior to the emulsifying of PA in surfactant solution. The Cu NWs would remain intact in case the ethanol was eliminated before the PA/Cu NWs mixture was mixed with surfactant solution. Otherwise, the Cu NWs would be partially oxidized under the attack of ethanol and ammonium persulfate. The ΔH melting of the form-stable PCMs containing Cu NWs decreased linearly with the increasing of Cu NWs loading. The ΔH melting of the form-stable PCMs doped with 11.2 mass% Cu NWs was 149 J g?1. The thermal conductivity of the form-stable PCMs could be effectively improved by Cu NWs. By adding 11.2 mass% Cu NWs, the thermal conductivity of the form-stable PCM could attain 0.455 W m?1 K?1.  相似文献   

11.

In this study, tetradecanol–palmitic acid/expanded perlite composites containing carbon fiber (TD-PA/EP-CF CPCMs) were prepared by a vacuum impregnation method. Binary eutectic mixtures of PA and TD were utilized as thermal energy storage material in the composites, where EP behaved as supporting material. X-ray diffraction demonstrated that crystal structures of PA, TD, EP, and CF remained unchanged, confirming no chemical interactions among raw materials besides physical combinations. The microstructures indicated that TD-PA was sufficiently absorbed into EP porous structure, forming no leakage even in molten state. Differential scanning calorimetry estimated the melting temperature of TD-PA/EP-CF CPCM to 33.6 °C, with high phase change latent heat (PCLH) of 138.3 kJ kg−1. Also, the freezing temperature was estimated at 29.7 °C, with PCLH of 137.5 kJ kg−1. The thermal cycling measurements showed that PCM composite had adequate stability even after 200 melting/freezing cycles. Moreover, the thermal conductivity enhanced from 0.48 to 1.081 W m−1 K−1 in the presence of CF. Overall, the proposed CPCMs look promising materials for future applications due to their appropriate phase change temperature, elevated PCLH, and better thermal stability.

  相似文献   

12.
Journal of Thermal Analysis and Calorimetry - Microencapsulated paraffin with polyurea/acrylic resin hybrid shells as phase change energy storage materials was obtained in situ by combining...  相似文献   

13.

Using palmitic acid (PA), expanded graphite (EG), and carbon fiber (CF) as raw materials, PA/EG/CF composite phase change materials (CPCMs) with diverse CF contents were invented by melt blending approach. The effects of different ratios on thermal properties were studied by experimental characterization and testing. Scanning electron microscopy images displayed that PA was adsorbed in the pores of the EG surface, while CF was disorderly but uniformly embedded in the interior and surface of pores. The chemical stability and thermal decomposition stability of CPCM at low temperature were proved by Fourier transform infrared spectrometer and thermogravimetric analyzer results, respectively. According to the law of heat storage/release time and latent heat variation, the optimal ratio scheme was determined, and its heat storage/release time was 65% and 59% lower than pure PA, respectively. The form-stable materials were prepared by compression forming method, and thermal cycling experiment results demonstrated that the higher the content of CF, the stronger the inhibition of mass loss. Based on the experimental results, the PA/EG/CF CPCM has the advantages of stable phase transition, strong stability, and fast heat storage and release rate, so it has a marvelous application prospect in the field of low-temperature heat storage engineering.

  相似文献   

14.
A series of novel hyperbranched polyurethane copolymer (HB-PUPCM) using hyperbranched polyester as chain extender was prepared via a two-step process. The phase transition behaviors and morphology of the HB-PUPCM films were investigated using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermo-gravimetric analysis (TGA), wide-angle X-ray diffraction (WAXD), polarizing optical microscopy (POM) and tapping-mode atomic force microscopy (AFM). HB-PUPCM was proven to a good polymeric solid-solid phase change heat storage material.  相似文献   

15.
The bulk-biodegradable solid–solid phase change materials (SSPCMs) based on phase change polyethylene glycol (PEG) were synthesized by solvent-free polyaddition. On the basis of the fact that the water absorption is up to 800 mass% and that the poly(ethylene oxide) molecular chains can be degraded by microorganisms, the bulk-biodegradable mechanism of SSPCMs was put forward and studied. The X-ray diffraction patterns and the polarizing optical microscopy images show the SSPCMs possess the defective crystal and small grain compared with PEG. The differential scanning calorimetry data demonstrate the melting temperature and enthalpy of the synthesized SSPCMs are, respectively, 41 °C and 128 J g?1. The bulk-biodegradable SSPCMs have the preeminent thermal reliability and the high thermal stability due to the onset thermal degradation temperature above 302 °C, which will give a good insight into bulk-biodegradable PCM system.  相似文献   

16.
Journal of Thermal Analysis and Calorimetry - Utilization of renewable biomass to prepare phase change material (PCM) that can reversibly store renewable thermal energy is of great interest. Castor...  相似文献   

17.
Journal of Thermal Analysis and Calorimetry - Phase change materials (PCMs) can store and release the latent heat associated with a phase transition, so they can be applied in thermal energy...  相似文献   

18.
Tan  Ni  Ning  Yu-Hao  Hu  Ping  Feng  Yang  Li  Qi  Lin  Chuan-Huang  Cao  Zhong  Zhang  Yue-Fei  Zeng  Ju-Lan 《Journal of Thermal Analysis and Calorimetry》2022,147(13):7077-7097
Journal of Thermal Analysis and Calorimetry - Solid–liquid phase change materials (PCMs) are a kind of important heat energy storage materials that can store/release great amounts of latent...  相似文献   

19.
A novel poly(styrene-co-acrylonitrile)-graft-polyethylene glycol(SAN-g-PEG) copolymer was synthesized as new solid–solid phase change materials(SSPCMs) by grafting PEG to the main chain of poly(styrene-co-acrylonitrile). The chemical structure of the SAN-g-PEG was confirmed by the Fourier transform infrared(FT-IR) and proton nuclear magnetic resonance(1H NMR) spectroscopy techniques. The thermal energy storage properties and the storage durability of the SAN-g-PEG were investigated by differential scanning calorimetry(DSC). The SAN-g-PEG was endowed with the solid–solid phase transition temperatures within the range of 23–36 8C and the latent heat enthalpy ranged from 66.8 k J/kg to 68.3 k J/kg. Thermal cycling tests revealed that the SAN-g-PEG kept great heat storage durability after 1000 thermal cycles. The thermal stability was evaluated by a thermal gravity analysis(TGA), and the initial decomposition temperature(Td) of SAN-g-PEG is 350 8C, which proves that the SAN-g-PEG possessed good thermal stability.  相似文献   

20.
Guo  Liping  Yu  Xiaoping  Gao  Daolin  Guo  Yafei  Ma  Chi  Deng  Tianlong 《Journal of Thermal Analysis and Calorimetry》2019,135(6):3215-3221
Journal of Thermal Analysis and Calorimetry - In order to obtain a low-cost, high latent heat and thermostable phase change material with a phase change temperature between 18 and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号