首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张路  谢天婷  罗懋康 《物理学报》2014,63(1):10506-010506
本文利用解析和数值的方法研究了由双频周期信号驱动含分数阶内、外阻尼的Duffing振子的振动共振现象,并讨论了分数阶阶数对上述现象的影响. 研究发现:双频周期信号同时驱动的分数阶Duffing振子响应幅值增益Q可随着高频周期激励幅值的改变达到最大值,即出现了和整数阶非线性动力系统相似的振动共振现象,而相应的分数阶导数项则分别为系统提供了内、外两种阻尼力从而导致了系统有效势函数的改变,进而引发了比整数阶动力系统更为丰富的振动共振现象. 关键词: 振动共振 Duffing振子 分数阶阻尼 分数阶系统  相似文献   

2.
李海涛  秦卫阳  周志勇  蓝春波 《物理学报》2014,63(22):220504-220504
研究了含分数阶阻尼的双稳态能量采集系统的相干共振. 建立了带有分数阶阻尼的轴向受压梁压电能量采集系统动力学模型. 对于分数阶方程, 采用Euler-Maruyama-Leipnik方法进行求解, 计算了不同阻尼阶数下的能量采集系统的信噪比、响应均值、跃迁数目等统计物理量. 结果表明: 此压电能量采集系统在随机激励下可以实现相干共振, 阻尼阶数对相干共振的临界噪声强度和相干共振幅值有很大影响. 关键词: 分数阶阻尼 随机激励 能量采集系统 相干共振  相似文献   

3.
The phenomenon of vibrational resonance (VR) is investigated in over- and under-damped Duffing systems with fractional-order damping. It is found that the factional-order damping can induce change in the number of the steady stable states and then lead to single- or double-resonance behavior. Compared with vibrational resonance in the ordinary systems, the following new results are found in the fractional-order systems. (1) In the overdamped system with double-well potential and ordinary damping, there is only one kind of single-resonance, whereas there are double-resonance and two kinds of single-resonance for the case of fractional-order damping. The necessary condition for these new resonance behaviors is the value of the fractional-order satisfies α?>?1. (2) In the overdamped system with single-well potential and ordinary damping, there is no resonance, whereas there is a single-resonance for the case of fractional-order damping. The necessary condition for the new result is α?>?1. (3) In the underdamped system with double-well potential and ordinary damping, there are double-resonance and one kind of single-resonance, whereas there are double-resonance and two kinds of single-resonance for the case of fractional-order damping. The necessary condition for the new single-resonance is α?相似文献   

4.
Penetration of millimeter electromagnetic waves through permalloy films under magnetic resonance conditions is studied experimentally and theoretically. Measurements are taken on film samples from 40 to 200 nm in thickness in a frequency range from 26 to 38 GHz. Magnetic resonance, antiresonance, and spin-wave resonance are observed. The resonance spectrum is reconstructed. The Gilbert damping constant is determined for a series of films. It is shown that the damping constant decreases upon an increase in the film thickness. The resonance line profile is calculated, and the dependences of resonance line amplitude and width on experimental conditions and material parameters of the film are determined.  相似文献   

5.
J H YANG  M A F SANJUÁN  W XIANG  H ZHU 《Pramana》2013,81(6):943-957
The pitchfork bifurcation and vibrational resonance are studied in a fractional-order Duffing oscillator with delayed feedback and excited by two harmonic signals. Using an approximation method, the bifurcation behaviours and resonance patterns are predicted. Supercritical and subcritical pitchfork bifurcations can be induced by the fractional-order damping, the exciting high-frequency signal and the delayed time. The fractional-order damping mainly determines the pattern of the vibrational resonance. There is a bifurcation point of the fractional order which, in the case of double-well potential, transforms vibrational resonance pattern from a single resonance to a double resonance, while in the case of single-well potential, transforms vibrational resonance from no resonance to a single resonance. The delayed time influences the location of the vibrational resonance and the bifurcation point of the fractional order. Pitchfork bifurcation is the necessary condition for the double resonance. The theoretical predictions are in good agreement with the numerical simulations.  相似文献   

6.
This paper presents the implementation of autoparametric phenomena to reduce the symmetrical vibration of a curved beam/panel under external harmonic excitation. The internal energy transfer of a first symmetric mode into first anti-symmetric mode in a curved panel is one example of autoparametric vibration absorber effect. This is similar to the vibration energy transfer from the resonance of a primary structure to the resonance of a secondary spring–mass (tuned mass damper). The nonlinear response of a curved beam is analyzed using an equation with two modes, and a shaker test. The effect of different configurations of the curve beam/panel, including damping ratios and excitation levels, on the energy transfer of the first symmetric mode to the first anti-symmetric mode was studied.The conventional tuned mass damper (TMD) can reduce the resonance response by energy transfer using damping dissipation, whereas an autoparametric vibration absorber (AVA) can reduce the resonance response by energy transfer using parametric interaction. The results indicate that there is a non-absorption region in which vibration is amplified. For the AVA, the non-absorption region can be minimized by tuning the resonance frequency of the first anti-symmetric mode to half of the first symmetric mode resonance frequency using additional mass. No additional damping material is required for achieving sufficient vibration reduction. The AVA can maintain reliable performance in hot and corrosive environments where damping material cannot perform effectively. This paper presents the first successful experimental results of an autoparametric vibration absorption mechanism in a curved beam.  相似文献   

7.
The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenological treatment of damping. This Letter presents first-principles calculations of the damping parameters for Fe, Co, and Ni that quantitatively agree with existing ferromagnetic resonance measurements. This agreement establishes the dominant damping mechanism for these systems and takes a significant step toward predicting and tailoring the damping constants of new materials.  相似文献   

8.
The low Gilbert damping factor,which is usually measured by ferromagnetic resonance,is crucial in spintronic applications.Two-magnon scattering occurs when the orthogonality of the ferromagnetic resonance mode and other degenerate spin wave modes was broken by magnetic anisotropy,voids,second phase,surface defects,etc.,which is important in analysis of ferromagnetic resonance linewidth.Direct fitting to linewidth with Gilbert damping is advisable only when the measured linewidth is a linear function of measuring frequency in a broad band measurement.We observe the nonlinear ferromagnetic resonance linewidth of Co_2MnSi thin films with respect to measuring frequency in broad band measurement.Experimental data could be well fitted with the model including two-magnon scattering with no fixed parameters.The fitting results show that two-magnon scattering results in the nonlinear linewidth behavior,and the Gilbert damping factor is much smaller than reported ones,indicating that our Co_2 MnSi films are more suitable for the applications of spin transfer torque.  相似文献   

9.
为了设计和优化高速激光二极管的高频特性,其速率方程模型参量的精确提取方法非常重要.本文针对新型长波长高带宽的掩埋隧道结垂直面激光器,给出一种速率方程模型参量提取方法.此方法是主要基于阈值电流、输出光功率、张弛振荡频率、阻尼因子和高偏置下增益压缩因子非线性效应等因素,根据已测量的不同偏置下芯片的小信号频率响应来拟合出方程中的张弛振荡频率和阻尼因子.通过考虑增益压缩因子,分别非线性拟合已提取的偏置光功率下的张弛振荡频率和阻尼因子,即可提取速率方程模型中的参量.  相似文献   

10.
Absorbing and emitting optical properties of a spherical plasmonic nanoantenna are described in terms of the size dependent resonance frequencies and damping rates of the multipolar surface plasmons (SP). We provide the plasmon size characteristics for gold and silver spherical particles up to the large size retardation regime where the plasmon radiative damping is significant. We underline the role of the radiation damping in comparison with the energy dissipation damping in formation of receiving and transmitting properties of a plasmonic particle. The size dependence of both: the multipolar SP resonance frequencies and corresponding damping rates can be a convenient tool in tailoring the characteristics of plasmonic nanoantennas for given application. Such characteristics enable to control an operation frequency of a plasmonic nanoantenna and to change the operation range from the spectrally broad to spectrally narrow and vice versa. It is also possible to switch between particle receiving (enhanced absorption) and emitting (enhanced scattering) abilities. Changing the polarization geometry of observation it is possible to effectively separate the dipole and the quadrupole plasmon radiation from all the non-plasmonic contributions to the scattered light.  相似文献   

11.
磁共振成像在现今临床医学诊断上占有相当重要的地位.如何增强成像对比度是磁共振成像研究领域中极为重要的课题.传统成像中利用磁共振性质的差异性来获得成像对比度,然而当这些性质的差异性小时,即使经过时间演化,还是难以得到可视的对比度.为了解决此问题,辐射阻尼是其中一个可能的方案.之前的研究显示,辐射阻尼对极小频率差亦能够在短时间的演化下得到相当强的对比度.然而辐射阻尼的产生需要高敏感度的射频线圈等限制.该研究将介绍如何利用外加的线路,模拟辐射阻尼现象,进而控制自旋动态,以达到增强成像对比度并进一步设计新的磁共振成像方式.  相似文献   

12.
宋艳丽 《物理学报》2010,59(4):2334-2338
研究了简谐噪声激励下的FitzHugh-Nagumo神经元模型, 其放电形式、相干共振等动力学行为均受噪声阻尼参数和频率参数的影响.选择不同的参数所得到的神经元的放电形式不同.神经元存在共振特性,对某一频率的噪声有更强的响应,在此频率参数下的峰序列更有序,出现相干共振系数的极小值.噪声的阻尼参数越大,不同的频率成分越多,神经元的响应也变得杂乱,进而导致神经元与噪声的同步变弱,峰序列相干共振系数也相应增大. 关键词: 简谐噪声 FitzHugh-Nagumo神经元 相干共振 峰峰间隔  相似文献   

13.
宋艳丽 《中国物理 B》2010,19(4):2334-2338
研究了简谐噪声激励下的FitzHugh-Nagumo神经元模型, 其放电形式、相干共振等动力学行为均受噪声阻尼参数和频率参数的影响.选择不同的参数所得到的神经元的放电形式不同.神经元存在共振特性,对某一频率的噪声有更强的响应,在此频率参数下的峰序列更有序,出现相干共振系数的极小值.噪声的阻尼参数越大,不同的频率成分越多,神经元的响应也变得杂乱,进而导致神经元与噪声的同步变弱,峰序列相干共振系数也相应增大.  相似文献   

14.
We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake Cr Cl;with an external magnetic field H applied in plane.Based on a Lagrangian equation and a Rayleigh dissipation function,we predicted that the resonance linewidth△H as a function of microwave frequencyωis nonlinear for both acoustic and optical modes in the Cr Cl;flake,which is significantly different from the linear relationship of△H-ωin ferromagnets.Measuring the microwave transmission through the Cr Cl;flake,we obtained theω–H dispersion and damping evolution△H–ωfor both acoustic and optical modes.Combining both our theoretical prediction and experimental observations,we concluded that the nonlinear damping evolution△H–ωis a consequence of the interlayer interaction during the antiferromagnetic resonance,and the interlayer Gilbert dissipation plays an important role in the nonlinear damping evolution because of the asymmetry of the non-collinear magnetizaiton between layers.  相似文献   

15.
Mechanical resonance properties of porous graphene resonators were investigated by simulation studies. The finite element method was utilized to design the porous graphene membrane pattern and to calculate the mechanical resonance frequency and quality factor. The changes in the resonance frequency and quality factor were systematically studied by changing the size, number, and relative location of pores on the graphene membrane. Mass loss and carbon-carbon bond break were found to be the main competing parameters for determining its mechanical resonance properties. The correlation between the geometry and the damping effect on the mechanical resonance of graphene was considered by suggesting a model on the damping factor and by calculating the membrane deflections according to the pore location. Based on the simulation results, an optimal porosity and porous geometry were found that gives the maximum resonance frequency and quality factor. Suspended graphene with various number pore structures was experimentally realized, and their mechanical resonance behaviors were measured. The trend of changes in resonance frequency and quality factor according to the number of pores in the experiment was qualitatively agreed with simulation results.  相似文献   

16.
Perhaps the most familiar concepts when discussing acoustic scattering by bubbles are the resonance frequency for bubble pulsation, the bubbles' damping, and their scattering and extinction cross-sections, all of which are used routinely in oceanography, sonochemistry, and biomedicine. The apparent simplicity of these concepts is illusory: there exist multiple, sometimes contradictory definitions for their components. This paper reviews expressions and definitions in the literature for acoustical cross-sections, resonance frequencies, and damping factors of a spherically pulsating gas bubble in an infinite liquid medium, deriving two expressions for "resonance frequency" that are compared and reconciled with two others from the reviewed literature. In order to prevent errors, care is needed by researchers when combining results from different publications that might have used internally correct but mutually inconsistent definitions. Expressions are presented for acoustical cross-sections associated with forced pulsations damped by liquid shear and (oft-neglected) bulk or dilatational viscosities, gas thermal diffusivity, and acoustic re-radiation. The concept of a dimensionless "damping coefficient" is unsuitable for radiation damping because different cross-sections would require different functional forms for this parameter. Instead, terms based on the ratio of bubble radius to acoustic wavelength are included explicitly in the cross-sections where needed.  相似文献   

17.
Free oscillations of the magnetization ranging from 500 to 1100 mc/sec have been excited in thin permalloy films by a pulse field with a risetime less than 0·35 nsec, and observed with a sampling oscilloscope. The eigenfrequencies and the damping constants of these free oscillations are compared with the resonance frequencies and the damping constants of forced oscillations obtained in ferromagnetic resonance experiments. Perpendicular and parallel orientation of the magnetization with respect to the easy direction of the induced uniaxial anisotropy of the film are considered. The results show reasonable agreement with theoretical values gained from the Landau-Lifshitz equation.  相似文献   

18.
K I Thomas  G Ambika 《Pramana》2002,59(3):445-456
Dynamical systems with nonlinear damping show interesting behavior in the periodic and chaotic phases. The Froude pendulum with cubical and linear damping is a paradigm for such a system. In this work the driven Froude pendulum is studied by the harmonic balancing method; the resulting nonlinear response curves are studied further for resonance and stability of symmetric oscillations with relatively low damping. The stability analysis is carried out by transforming the system of equations to the linear Mathieu equation.  相似文献   

19.
Radiation damping induced by the strong water magnetization in Z-spectroscopy experiments can be sufficient to perturb significantly the resultant Z-spectrum. With a probe tuned to exact electrical resonance the effects are relatively straightforward, narrowing the central feature of the Z-spectrum. Where, as is commonly the case, the probe is tuned sufficiently well to give optimum signal-to-noise ratio and radiofrequency field strength but is not at exact resonance, radiation damping introduces an unexpected asymmetry into the Z-spectrum. This has the potential to complicate the use of Z-spectrum asymmetry to study chemical exchange, for example in the estimation of pH in vivo.  相似文献   

20.
An analytical and numerical investigation into the dynamic interaction between a cantilever beam with nonlinear damping and stiffness behavior, modeled by the Duffing-Rayleigh equation, and a non-ideal motor that is connected to the end of the beam, is presented. Non-stationary and steady-state responses in the resonance region as well as the passage through resonance behavior when the frequency of the excitation is varied are analyzed. The influences of nonlinear stiffness, nonlinear damping and the extent of the unbalance in the motor are examined. It is found that in this situation so-called Sommerfeld effects may be observed; the increase required by a source operating near the resonance results in a small change in the frequency, but there is a large increase in the amplitude of the resultant vibration and the jump phenomenon occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号