首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Distance-regular graphs of diameter three are of three (almost distinct) kinds: primitive, bipartite, and antipodal. An antipodal graph of diameter three is just an r-fold covering of a complete graph Kk+1 for some r?k. Its intersection array and spectrum are determined by the parameters r, k together with the number c of 2-arcs joining any two vertices at distance two. Most such graphs have girth three. In this note we consider antipodal distance-regular graphs of diameter three and girth ? 4. If r=2, then the only graphs are “Kk+1, k+1 minus a 1-factor.” We therefore assume r?3. The graphs with c=1 necessarily have r=k and were classified in lsqb3rsqb. We prove the inequality r?2>c12 (Theorem 2), list the feasible parameter sets when c=2 or 3 (Corollary 1), and conclude that every 3-fold or 4-fold antipodal covering of a complete graph has girth three (Corollary 2).  相似文献   

2.
It is shown that any bipartite distance-regular graph with finite valency k and at least one cycle is finite, with diameter d and girth g satisfying d≤(k?1)(g?2)2+1. In particular, the number of bipartite distance-regular graphs with fixed valency and girth is finite.  相似文献   

3.
4.
The concept of a k-sequential graph is presented as follows. A graph G with ∣V(G)∪ E(G)∣=t is called k-sequential if there is a bijection?: V(G)∪E(G) → {k,k+1,…,t+k?1} such that for each edgee?=xyin E(G) one has?(e?) = ∣?(x)??(y)∣. A graph that is 1-sequential is called simply sequential, and, in particular the author has conjectured that all trees are simply sequential. In this paper an introductory study of k-sequential graphs is made. Further, several variations on the problems of gracefully or sequentially numbering the elements of a graph are discussed.  相似文献   

5.
A connected graph G of even order v is called t-extendable if it contains a perfect matching, t<v/2 and any matching of t edges is contained in some perfect matching. The extendability of G is the maximum t such that G is t-extendable. Since its introduction by Plummer in the 1980s, this combinatorial parameter has been studied for many classes of interesting graphs. In 2005, Brouwer and Haemers proved that every distance-regular graph of even order is 1-extendable and in 2014, Cioabă and Li showed that any connected strongly regular graph of even order is 3-extendable except for a small number of exceptions.In this paper, we extend and generalize these results. We prove that all distance-regular graphs with diameter D3 are 2-extendable and we also obtain several better lower bounds for the extendability of distance-regular graphs of valency k3 that depend on k, λ and μ, where λ is the number of common neighbors of any two adjacent vertices and μ is the number of common neighbors of any two vertices in distance two. In many situations, we show that the extendability of a distance-regular graph with valency k grows linearly in k. We conjecture that the extendability of a distance-regular graph of even order and valency k is at least k/21 and we prove this fact for bipartite distance-regular graphs.In course of this investigation, we obtain some new bounds for the max-cut and the independence number of distance-regular graphs in terms of their size and odd girth and we prove that our inequalities are incomparable with known eigenvalue bounds for these combinatorial parameters.  相似文献   

6.
7.
G = 〈V(G), E(G)〉 denotes a directed graph without loops and multiple arrows. K(G) denotes the set of all Hamiltonian circuits of G. Put H(n, r) = max{|E(G)|, |V(G)| = n, 1 ≤ |K(G)| ≤ r}. Theorem: H(n, 1) = (n22) + (n2) ?1. Further, H(n, 2),…, H(n, 5) are given.  相似文献   

8.
We present an algorithm which finds a minimum vertex cover in a graph G(V, E) in time O(|V|+(ak)2k3), where for connected graphs G the parameter a is defined as the minimum number of edges that must be added to a tree to produce G, and k is the maximum a over all biconnected components of the graph. The algorithm combines two main approaches for coping with NP-completeness, and thereby achieves better running time than algorithms using only one of these approaches.  相似文献   

9.
Suppose every vertex of a graph G has degree k or k + 1 and at least one vertex has degree k + 1. It is shown that if k ≥ 2q ? 2 and q is a prime power then G contains a q-regular subgraph (and hence an r-regular subgraph for all r < q, rq (mod 2)). It is also proved that every simple graph with maximal degree Δ ≥ 2q ? 2 and average degree d > ((2q ? 2)(2q ? 1))(Δ + 1), where q is a prime power, contains a q-regular subgraph (and hence an r-regular subgraph for all r < q, rq (mod 2)). These results follow from Chevalley's and Olson's theorems on congruences.  相似文献   

10.
The toughness of a graph G is defined as the largest real number t such that deletion of any s points from G results in a graph which is either connected or else has at most s/t components. Clearly, every hamiltonian graph is 1-tough. Conversely, we conjecture that for some t0, every t0-tough graph is hamiltonian. Since a square of a k-connected graph is always k-tough, a proof of this conjecture with t0 = 2 would imply Fleischner's theorem (the square of a block is hamiltonian). We construct an infinite family of (32)-tough nonhamiltonian graphs.  相似文献   

11.
In this paper we will look at the relationship between the intersection number c 2 and the diameter of a distance-regular graph. We also give some tools to show that a distance-regular graph with large c 2 is bipartite, and a tool to show that if k D is too small then the distance-regular graph has to be antipodal.  相似文献   

12.
13.
In “The Slimmest Geometric Lattices” (Trans. Amer. Math. Soc.). Dowling and Wilson showed that if G is a combinatorial geometry of rank r(G) = n, and if X(G) = Σμ(0, x)λr ? r(x) = Σ (?1)r ? kWkλk is the characteristic polynomial of G, then
wk?rk+nr?1k
Thus γ(G) ? 2r ? 1 (n+2), where γ(G) = Σwk. In this paper we sharpen these lower bounds for connected geometries: If G is connected, r(G) ? 3, and n(G) ? 2 ((r, n) ≠ (4,3)), then
wi?ri + nri+1 for i>1; w1?r+nr2 ? 1;
|μ| ? (r? 1)n; and γ ? (2r ? 1 ? 1)(2n + 2). These bounds are all achieved for the parallel connection of an r-point circuit and an (n + 1)point line. If G is any series-parallel network, r(G) = r(G?) = 4, and n(G) = n(G?) = 3 then (w1(G))4t-G ? (w1(G?)) = (8, 20, 18, 7, 1). Further, if β is the Crapo invariant,
β(G)=dX(G)(1),
then β(G) ? max(1, n ? r + 2). This lower bound is achieved by the parallel connection of a line and a maximal size series-parallel network.  相似文献   

14.
Let G be a graph with vertex-set V(G) and edge-set X(G). Let L(G) and T(G) denote the line graph and total graph of G. The middle graph M(G) of G is an intersection graph Ω(F) on the vertex-set V(G) of any graph G. Let F = V′(G) ∪ X(G) where V′(G) indicates the family of all one-point subsets of the set V(G), then M(G) = Ω(F).The quasi-total graph P(G) of G is a graph with vertex-set V(G)∪X(G) and two vertices are adjacent if and only if they correspond to two non-adjacent vertices of G or to two adjacent edges of G or to a vertex and an edge incident to it in G.In this paper we solve graph equations L(G) ? P(H); L(G) ? P(H); P(G) ? T(H); P(G) ? T(H); M(G) ? P(H); M(G) ? P(H).  相似文献   

15.
A theorem is proved that is (in a sense) the best possible improvement on the following theme: If G is an undirected graph on n vertices in which |Γ(S)| ≥ 13(n + | S | + 3) for every non-empty subset S of the vertices of G, then G is Hamiltonian.  相似文献   

16.
Let C be the class of triangle-free graphs with maximum degree four. A lower bound for the number of edges in a graph of C is derived in terms of its order p and independence β. Also a characterization of certain minimum independence graphs in C is provided. Let r(k) be the smallest integer such that every graph in C with at least r(k) vertices has independence at least k. The values of r(k) for all k may be derived from our main theorem and 413 obtained as the best possible lower bound for the independence ratio βp of graphs in C.  相似文献   

17.
Edge-distance-regularity is a concept recently introduced by the authors which is similar to that of distance-regularity, but now the graph is seen from each of its edges instead of from its vertices. More precisely, a graph Γ with adjacency matrix A is edge-distance-regular when it is distance-regular around each of its edges and with the same intersection numbers for any edge taken as a root. In this paper we study this concept, give some of its properties, such as the regularity of Γ, and derive some characterizations. In particular, it is shown that a graph is edge-distance-regular if and only if its k-incidence matrix is a polynomial of degree k in A multiplied by the (standard) incidence matrix. Also, the analogue of the spectral excess theorem for distance-regular graphs is proved, so giving a quasi-spectral characterization of edge-distance-regularity. Finally, it is shown that every nonbipartite graph which is both distance-regular and edge-distance-regular is a generalized odd graph.  相似文献   

18.
On a finite simple graph G = (X,E), p players pursuers A1, ∴, Ap and one player evader B who move in turn along the edges of G are considered. The p pursuers A1, ∴, Ap want to catch B who tries to escape. R. Nowakowski and P. Winkler [Discrete Math.43 (1983), 235–240] and A. Quilliot [“Thèse de 3° cycle,” pp. 131–145, Université de Paris VI, 1978] already characterized the graphs such that one pursuer is sufficient to catch the evader B. Very recently, M. Aigner and M. Fromme [Appl. Discrete Math., in press] proved that if G is a planar graph, three pursuers are sufficient to catch the evader B. This result is extended, showing that if G is a graph with a given genus k, then 3 + 2k pursuers are enough to “arrest” the evader B.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号