首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-linear equation RR? + 32R2 - AR?4 + B = 0 is shown to represent simply periodic motion with a minimum at R1 and a maximum at R1R0 or a maximum at R1 and a minimum at R1R0?1. R0 is a function of the ratio AB and is greater than 1 for AB > 1 and less than 1 for AB > 1. The period of the motion satisfies the simple relation T(R0?1) = R0?1T(R0). The exact solution to the above equation is represented in terms of elliptic integrals of the first and second kinds and a simple algebraic function.  相似文献   

2.
The effect of hydrodynamic coupling of adjacent phases on the axisymmetric drainage of thin films is examined using a prototype model of coalescence. For long times, pressure forces in the film dominate flow in all three regions, and finally all move effectively as one, whereas for short times, profiles are sharp and initial flow differences in the three regions can dominate pressure effects. For intermediate times, temporal evolution of velocity profiles depends in a complicated way on the kinematic viscosity ratio and the parameter R = (?AμA/?BB)12, as well as on initial conditions and pressure gradient. Generally speaking, the initial flows have less of an effect on overall drainage time than the presence of induced circulation in adjacent phases. Analytical solutions are plotted for a range of systems and representative initial conditions and pressure gradients. In a subsequent article, film-thinning equations are solved using this information.  相似文献   

3.
Isothermal and non-isothermal flow rate-pressure drop data in turbulent flow through smooth pipes have been obtained for non-Newtonian fluids, including aqueous solutions of polymers and aqueous suspensions of titanium dioxide. It has been found that the friction factor, f, is a function of a new form of Reynolds number, ReB, based on the parameters A, x and w of Bowen's correlation, viz.
τwDx=Auw
where τw is the wall shear strees, ?u the mean velocity, D the pipe diameter; A, x and w are experimentally derived parameters which characterise the fluid.  相似文献   

4.
OFHC copper specimens of 39 μm grain size were deformed to small strains (up to 8%) in tension, torsion and combined tension-torsion at 300 K and the resulting dislocation structures, distributions and densities were determined using transmission electron microscopy. Employing the von Mises yield criterion and the plastic-work hypothesis good agreement was obtained for the three testing conditions for (i) equivalent stress \?gs vs equivalent strain \?g3p curves, (ii) the dislocation structure, distribution and density ρ as a function of \?g3p, and (iii) \?gs as a function of ρ12. Furthermore, upon comparing the \?gs vs ρ12 curve for polycrystalline copper with the τRSS vs ρ12 curve for single crystals, an average Taylor factor M= (σ/τRSS) of approximately 3.2 was obtained, which is in good accord with that predicted theoretically for FCC metals. Almost equally good correlations for the stressstrain curves and for the dislocation density were obtained on the basis of maximum shear stress τmax and maximum shear strain γpmax as on the basis of \?gs and \?g3P. Therefore, the present results do not permit a positive decision on the question whether the dislocation density correlates better with \?gs and \?g3P or with τmax and γPmax.A single test in which the direction of straining in torsion was reversed yielded a density and distribution of dislocations (and a corresponding value of \?gs) equivalent to those that developed at a smaller strain in unidirectional straining.  相似文献   

5.
Employing a complex variable approach to the equations of motion for an incompressible viscous fluid and a more general approximation to the convecting stream function it is possible to calculate an approximation to the vorticity on the boundary for streaming flow past a circular cylinder without solving first for the complete flow field. In particular it is found that separation at the rear stagnation point first occurs when R1 = 2.78, where R1 is the critical Reynolds number. This result is in good agreement with the value of R1 obtained by experiment and the value obtained numerically. The convecting stream function satisfies the conditions of no slip and vorticity is not convected through the cylinder as it is in small Reynolds number Oseen theory.  相似文献   

6.
Measurements of (1) burn-out, (2) circumferential film flow distribution, and (3) pressure drop in a 17 × 27.2 × 3500 mm concentric and eccentric annulus geometry are presented. The eccentric displacement was varied between 0 and 3 mm. The working fluid was water. Burn-out curves at 70 bar are presented for mass velocities between 500 and 1500 kg/m2s and for inlet subcoolings of 10°C and 100°C. The film flow measurements correspond to the steam qualities χ = 19 % and 24 % for the mass velocity G = 602 kg/m2s and χ = 20 % and 23 % for G = 1200 kg/m2s. The influence of the circumferential rod film flow variation on burn-out is discussed.  相似文献   

7.
Viscoelastic solutions were ejected vertically downwards into air and various Newtonian fluids. The measured swell increased significantly when ejected into a liquid rather than air. The observed increase is considered a result of both bouyancy and drag forces on the solution. The following dimensions expression relating the ratio of the swell diameter in liquid and air DL/DA to the elastic shear compliance of the ejected solution Je was experimentally observed.(DL/DA)6-1=30(Δ?/?s)?12([g2η2N?s]13Je)35, where Δ? is the density difference between the extruded and Newtonian fluid, ?s is the solution density, g is the gravitational constant, and ηN is the Newtonian fluid viscosity. Thus with this expression a simple extrudate swell technique exists to estimate the elastic shear compliance of a viscoelastic solution.  相似文献   

8.
Turbulent deposition of particles from two-phase flow onto the smooth wall of a tube has been studied theoretically and experimentally. A model is proposed for the deposition motion of large particles based on turbulent diffusion in the core followed by a free flight towards the wall. The theory shows that within the Stokes regime, the dimensionless deposition velocity k-d/u* depends on Re and τ+ only, where u* is the friction velocity, Re is the tube Reynolds number and τ+ is the dimensionless particle relaxation time. Deposition data are obtained for air-water droplet flow through a 12.7-mm i.d. acrylic tubing at Re = 52,500 and 94,600. The proposed theory satisfactorily describes the existing deposition data as well as present measurements, covering a wide range of Re and τ+.  相似文献   

9.
Combining single particle results, average equations and thermodynamic considerations, we propose a way to build the equations describing a suspension of rigid spherical particles in a carrier fluid, with emphasis on inertia effects including virtual mass. The spatial fluctuations of the fluid velocity field are depicted by two phenomenological functions ?(αs) and g(αs) of the particle volume fraction, and a third function h(αs) is necessary to describe the intensity of the particles internal stress. It is shown that all inertia effects occurring in the relative translational motion can be derived from the two functions ? and g–h only. The conditions under which the above system of equations is hyperbolic are determined and comparison is made with what is presently known about ?, g and h in the dilute limit.  相似文献   

10.
An isochoric motion can be performed both in perfect fluid, in Newtonian fluid, in Maxwell fluid (slow motions) and in Rivlin–Ericksen fluid of second grade whatever be viscosities and viscometric coefficients, iff the motion is universal. Every universal motion with steady vorticity is a generalised Belrami flow, and fulfils the Stokes equation. If the velocity u of an universal motion complies with rot[(?t(Δu))u]=0, the motion stands for feasible motion in every second order fluid. Brothers of the potential flows, all the sets of universal motions make up bundles of linear or cono??d spaces with various dimensions, finite or infinite, issued from the rest u0. The structures appear by scanning parallel to the potential flows. To cite this article: M. Bouthier, C. R. Mecanique 331 (2003).  相似文献   

11.
Collision efficiencies are determined for two surfactant-covered spherical drops in the limit of nearly uniform surface coverage in thermocapillary motion. The problem is linearized by assuming dilute surfactant concentration, with the effect of surfactant controlled by a single retardation parameter A  . The mobility function LALA along the drops’ line of centers is much less than zero over a wide range of parameters, so that the smaller drop can move faster than the larger one at moderate to large separations. At surface Péclet numbers less than 10, the incompressible surfactant model agrees well with solution of the full convective-diffusion equation for the minimum separation between drops. With the exception of non-conducting drops, the collision efficiencies become zero at moderate values of A. A model system of contaminated ethyl salicylate (ES) drops in diethylene glycol (DEG) is studied in thermocapillary motion. Population dynamics simulations confirm the coalescence-inhibiting effect of incompressible surfactant on the evolution of the ES/DEG drop-size distribution.  相似文献   

12.
13.
Properties of suspensions of spherical glass beads (25–38 μm dia.) in a Newtonian fluid and a non-Newtonian (NBS Fluid 40) fluid were measured at volume fractions, φ, of 0%, 10%, 20% and 30%. Measurements were made using a modified and computerized Weissenberg Rheogoniometer. Properties measured included steady shear viscosity, η(γ.), first normal stress difference, N1(γ.), linear viscoelastic properties, η′(ω) and G′(ω), shear stress relaxation, σ? (γ., t), and growth, σ+(γ., t) and normal stress relaxation, N1?(γ., t).For a the Newtonian fluid, increasing φ causes both η and η′ to increase, with η′ showing a slight frequency dependence. Both N1 and G′ are zero and stress relaxation and growth occur essentially instantaneously. For the NBS fluid, both η and η′ increse with φ at all γ. and ω, respectively, the increase being greater as γ. and ω approach zero. N1 and G′ are less affected by the presence of the particles than η and η′ with the effect on G′ being more pronounced than on N1. For fixed γ., stress relaxation and growth exhibit greater non-linear effects as φ is increased. A model for predicting a priori the linear viscoelastic properties for suspensions was found to yeild reasonable estimates up to φ = 20%.  相似文献   

14.
We study an evolutive model for electrical conduction in biological tissues, where the conductive intra-cellular and extracellular spaces are separated by insulating cell membranes. The mathematical scheme is an elliptic problem, with dynamical boundary conditions on the cell membranes. The problem is set in a finely mixed periodic medium. We show that the homogenization limit u0 of the electric potential, obtained as the period of the microscopic structure approaches zero, solves the equation ?div0?xu0+A0?xu0+∫0tA1(t?τ)?xu0(x,τ)dτ?F(x,t))=0 where σ0>0 and the matrices A0, A1 depend on geometric and material properties, while the vector function F keeps trace of the initial data of the original problem. Memory effects explicitly appear here, making this elliptic equation of non standard type. To cite this article: M. Amar et al., C. R. Mecanique 331 (2003).  相似文献   

15.
Slow flow through a periodic array of spheres is studied theoretically, and the drag force by the fluid on a sphere forming the periodic array is calculated using a modification of the method developed by Hashimoto (1959). Results for the complete range of volume fraction c of spheres are given for simple cubic, body-centered cubic, and face-centered cubic arrays and these agree well with the corresponding values reported by previous investigators. Also, series expansions for the drag force to 0(c10) are derived for each of these cubic arrays. The method is also applied to determine the drag force to 0(c3) on infinitely long cylinders in square and hexagonal arrays.  相似文献   

16.
Two methods for determining the initial coefficient of the first normal stress difference are presented. They are based on the evaluation of the steady viscosity function η(γ.) and the viscosity function η+(γ., t) at the start-up of a flow with a very small rate of deformation γ. < γ.0. For the functions η(γ.) and η+(γ.), equations are given which can be used for a simple evaluation of the integral relationships obtaiend for ψ10. The values for ψ10 calculated by the two methods are compared with values obtained by the well-known methods via measurement of the ψ1(γ.) or η″(ω)/ω functions and extrapolation to zero). Both methods give values which are in satisfactory agreement with the experimental values.  相似文献   

17.
Flow visualization experiments have been carried out on these melts flowing from a reservoir into a capillary die. The existence and magnitude of vortices at the die entrance have been determined over a range of extrusion conditions. The vortex size is interpreted in terms of the theory of viscoelastic fluid mechanics. It is found that the second-order fluid-perturbation solution cannot represent the observed experimental results. The data are correlated with (i) a Weissenberg number τchVL\?gt(γ?w)γ?w ≡ Ψ1γ?w/2η  (N1)w/ 2(σ12)w measured at the die wall and (ii) with the deformation-rate dependence of relaxation time. Interpretation of vortex formation and size in terms of elongational viscosity is offered.Several polystyrene and polyethylene melts have been rheologically characterized as part of this study with measurements of viscosity η and principal normal stress difference N1. The zero shear viscosity η0 of the polystyrenes varies with the 3.5 power of the weight-average molecular weight Mw while the principal normal stress difference coefficient Ψ1 varies with the sixth power of Mw when evaluated at a shear rate of 1 sec?1.  相似文献   

18.
A simple stochastic model has been developed for boiling pressure drop inside a circular tube with in-line static mixers. This model gives rise to the dimensionless correlating equation of the form:
[f] = a[Prm]?12[ReL]?1μmμLρρ?12Hse + xHLGCpmΔT?12
This correlation shows good agreement with the experimental data.  相似文献   

19.
20.
Choked flow of a foam in a convergent-divergent nozzle has been investigated. The foam consisted of air and a solution of a surface active agent in water. The upstream gas-liquid volume ratio δ0 was in the range 0.053–1.57. The experimental results are in very good agreement with a homogeneous frictionless nozzle flow theory, assuming isothermal behaviour of the gas and no relative motion between the phases, for throat gas-liquid volume ratios δ1 as high as 0.8; for ratios in the range 0.8 < δt < 2.98 the agreement, while only approximate, is still quite close. Departures from the homogeneous theory are explained in terms of (a) the failure of the assumption of the isothermal behaviour and (b) the existence of relative velocity between the phases. The latter effect predominates at low values of δ1 but at large values, it appears that both contribute to errors in the predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号