首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
The adsorption of C2H4 on W(100) has been studied by ultraviolet photoelectron spectroscopy with hν = 21.22 eV. The spectrum measured after in initial saturation exposure at 80 K exhibits structure which correlates well with energy levels recently calculated by Demuth and Eastman (DE) for sp3 rehybridized C2H4. Dehydrogenation of the adsorbate, either by subsequent heating to 295 K or direct adsorption at 295 K, yields a spectrum which correlates with DE's calculation for sp2 rehybridized C2H2. These results suggest that C2H4 and C2H2 may be distorted from their planar and linear structures respectively and that the CC bonds on these molecules are stretched by adsorption on W(100). Qualitative arguments suggest that the bonding site for both melecules is directly over a W atom and that the Dewar—Chatt model for πd bonding in organometallic compounds is applicable.  相似文献   

2.
The infrared and Raman spectra of C4H8CHCOOH, C4H8CHCOOD, C4H8CDCOOH, C4H8CDCOOD and their sodium salts were studied and frequency assignments made; the ring puckering vibrations were observed in the Raman spectrum. The depolarisation values show the existence of a plane of symmetry, perpendicular to the ring compatible with a “bent” structure.  相似文献   

3.
Hydrocarbon solutions of PtPCy3(C2H4)2 (Cy = cyclohexyl) react rapidly with 8-quinolinecarboxaldehyde (1 equiv.) to yield tricyclohexylphosphine quinolinecarboxyl platinum hydride (1) and CH2CH2 (2 equiv.). Compound 1 reacts with CCl4 in hydrocarbons to give PtPCy3(NC9H6CO)Cl (2) and CHCl3. The compound PtPCy3(C2H4)2 also reacts with Ph2P(C6H4-o-CHO) and Ph2As(C6H4-o-CHO) to give PCy3PtPh2P(C6H4-o-CO)(H) (3) and PCy3PtPh2As(C6H4-o-CO)(H) (4), respectively. Compounds 1, 2, 3, and 4 were characterized by infrared and 1H NMR spectra, and the crystal structure of 3 was determined by X-ray diffraction. Crystals of 3 are monoclinic, with space group P21/n and Z = 4 with the unit cell dimensions a 9.7936(17), b 14.844(35), c 23.530(64) Å, β 91.817 (18)°, and V 3419.09(1.36) Å3. The structure is refined to final discrepancy factors of R = 0.055, and Rw = 0.064. The molecular structure of 3 is that ligating atoms are in a plane containing Pt. The position of the hydride was not located crystallographically, but the 1H NMR spectrum of 3, supports the presence of a terminal hydride that is cis to the carbonyl. The IR band of 3 at 2023 cm?1 which is assigned to ν(PtH), and the hydride cleavage reaction of 1 with CCl4, provide evidence for the PtH bond.  相似文献   

4.
The reactions of methane with the dications C7H62+, C7H72+, and C7H82+ generated by electron ionization of toluene are studied using mass-spectrometry tools. It is shown that the reactivity is dominated by the formation of doubly charged intermediates, which can either eliminate molecular hydrogen to yield doubly charged products or undergo charge-separation reactions leading to the formation of a methyl cation and the corresponding C7Hn+1+ monocation. Typical processes observed for dications, like electron transfer or proton transfer, are largely suppressed. The theoretically derived mechanism of the reaction between C7H62+ and CH4 indicates that the formation of the doubly charged intermediate is kinetically preferred at low internal energies of the reactants. In agreement, the experimental results show a pronounced hydrogen scrambling and dominant formation of the doubly charged products at low collision energies, whereas direct hydride transfer prevails at larger collision energies.  相似文献   

5.
High pressure vapour-liquid equilibrium data for the C2H6 + N2, C2H4 + N2, C3H8 + N2, and C3H6 + N2 systems are presented. The data are obtained isothermally in the range from 200 K to 290 K. For each point of data, temperature, pressure and liquid and vapour phase mole fractions are measured.Values for the vapour phase mole fractions are calculated from the obtained pressure, temperature and liquid phase mole fractions. The calculated values are compared with the experimental results, and it is found that the average mean deviation between calculated and experimental mole fractions is less than 0.009 for the systems considered in this work.  相似文献   

6.
Experimental differential cross sections for 40 keV electrons scattered by C2H2, C2H4 and C2H6 molecules were measured using the gas electron diffraction method in the range of the scattering variable s from s = 1 A?1 to s = 30 A?1. The differential cross sections for neon were also measured and compared with calculated differential cross sections to calibrate the diffractograph. Experimental differential cross sections show significant deviations with respect to theoretical differential cross sections calculated from the Debye-Ehrenfest model, mainly in the range of small scattering angles. The observed differences are connected to chemical binding effects. From the experimental data, an estimation of the binding energy was carried out. The deduced values: ?0.58 ± 0.20 au for C2H2, ?0.94 ± 0.30 au for C2H4 and ?1.23 ± 0.40 au for C2H6 are in agreement with those obtained by thermochemical methods.  相似文献   

7.
The complexes C5H5CuPR3 (R = Me, Pri), C5H5AuPR3 (R = Me, Pri), C5Me5CuPR3 (R = Me, Pri, Ph) and C5Me5AuPR3 (R = Pri, Ph) are prepared from [ClCuPR3]n or ClAuPR3 and LiC5H5 (TlC5H5) or LiC5Me5, respectively. According to the 1H and 13C NMR spectra, the cyclopentadienyl and pentamethylcyclopentadienylgold compounds are fluxional in solution. The X-ray crystal structure of C5H5AuPPr3i has been determined at ?120°C. The gold atom is in a linear arrangement (PAuC(1) = 177.0(2)°) and primarily σ-bonded to the cyclopentadienyl ring which shows a weak “slip distortion” toward a η3-mode of coordination. The complexes C5R′5AuPR3 (R′ = H, Me) and C5Me5CuPPr3i react with 1-alkynes such as C2H2, HC2Ph and HC2CO2Me to form alkinylgold and copper compounds R″C2MPR3. They have been characterized by IR, UV and NMR (1H, 13C, 31P) spectroscopy.  相似文献   

8.
We have prepared polycrystalline samples of Zn(C3H3N2)2 by a liquid-mix technique. Characterization of the obtained samples has been performed with the aid of elemental, thermogravimetric, infrared spectra and X-ray powder diffraction analysis. We have measured electric permittivity (ε′, ε″), ac-conductivity (σac), magnetic susceptibility (χ) and specific heat (Cp). The obtained data indicate that this material is a new diamagnetic insulator. A maximum around is found in CpT−3, and it is suggested that in addition to the Debye lattice contribution, there exists a low-frequency mode assigned as an Einstein mode contribution to the total specific heat. As a main result of the study, we found ε′ to be constant in a wide temperature range and to have a small value of 2.3 at room temperature. This feature in combination with other properties like crystallization, good thermal stability (up to 400°C), weak moisture sensitivity and simple synthesis makes Zn(C3H3N2)2 to be a promising candidate for good insulating material in various applications.  相似文献   

9.
The single photon photodissociation of CH3ONO, C2H5ONO, and C3H7ONO has been studied under collision- free conditions using multiphoton ionization to detect the NO fragment. NO rotational excitation from CH3ONO was very large (Erot > 2100 cm?1) and non-thermal, while C2H5ONO and C3H7ONO produced NO which could be characterized by Trot = 350 and 250 K respectively.  相似文献   

10.
In the presence of NBu4nBr acting as phase-transfer reagent, organosilicon trichloride C2H5SiCl3 reacts in acetonitrile with the trivacant tungstophosphate sodium salt β-A-Na8H[PW9O34]·24H2O to give hybrid organosilyl polyoxotungstate derivative α-A-[NBu4n]3[PW9O34(C2H5SiO)3(C2H5Si)]. X-ray single crystal structural analysis indicates that the title compound is monoclinic, space group Cc, with lattice constants a=26.828(5), b=22.459(5), c=17.517(4) Å, β=103.19(3)°, V=10,276(4) Å3, Z=4, R=0.0462. According to the result of X-ray single crystal diffraction and chemical analysis, the hybrid polyanion consists of one α-A-[PW9O34]9− framework on which are grafted simultaneously three RSiO groups through six Si-O-W bridge bonds, each of which is attached to the fourth RSi group through three Si-O-Si bridge bonds. The hybrid polyanion becomes a partial saturated, closed cage structure and also has an assembly of virtual C3V symmetry.  相似文献   

11.
The Raman and infrared spectra (4000200 cm?1) of (C4H4P)Mn(CO)3 and (C4D4P)Mn(CO)3, and of [C4H2(CH3)2P]Mn(CO)3 and [C4D2(CH3)2P]Mn(CO)3 in the liquid and solid states (10–400 K) have been investigated. A complete vibrational assignment is proposed and valence force fields of the (C5H5) and (C4H4P) cycles are compared. From these results, it is clearly shown that the (C4H4P) rings are more electrophilic and weaker π-electron donors than (C5H5) rings, this is in agreement with their chemical behavior.  相似文献   

12.
The 1H NMR spectra of C2H5InBr2 · tmen (1) C2H5InI2 · tmen (2) (tmen = N,N,N′,N′-tetramethylethanediamme) and [(C6H5)4P][C2H5InI3] (3) show only a broad singlet for the ethyl protons at 60 MHz. Spectra run at 400 MHz resolve these into a triplet + quartet for 1 and 3. The structure of each compound has been determined by X-ray crystallography; 1 and 2 are five-coordinate species, with InC2N2X (X = Br, I) nuclei, while 3 consists of [(C6H5)4P]+ cations and anions whose InCI3 nucleus has C3v, symmetry.  相似文献   

13.
The 31P chemical shift of the (C6H5)3-nPXn ligands (X = Cl, Br, I; n = 0–3) is dominated by the electronegativity of the substituents. π bonding is only important for derivatives with three strongly electronegative substituents. The 31P chemical shift of the corresponding complexes (C6H5)3-nPXnCr(CO)5 is governed by the simultaneous effects of the electronegativity, steric hindrance and π bonding. The resonance parameter, δ', indicates an increasing (pringdp)π and (dcrdp)π electron delocalization with halogen substitution.  相似文献   

14.
A resonance Raman spectrum of the complex [(C2H5)4N] AuBr4 has been observed by use of 457.9 nm Ar+ excitation. Three progressions in the totally symmetric stretching fundamental ν1 (a1g) have been observed, viz. nν1 (as far as n = 9), ν2 + nν1 (as far as n = 1), and ν4 + nν1 (as far as n = 6). The spectroscopic constants ω1 and x11 have been determined from an analysis of the nν1 and ν4 + nν1 progressions.  相似文献   

15.
A new hybrid organic-inorganic three-dimensional compound, [Co4(OH)2(H2O)2](C4H11N2)2[C6H2(CO2)4]2·3H2O 1, has been synthesized via hydrothermal reactions and characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and magnetic techniques. Compound 1 crystallizes in the monoclinic space group P21/n (no. 14) with a=6.3029(9) Å, b=16.413(2) Å, c=17.139(2) Å, β=98.630(2)°, V=1735.0(4) Å3, Z=2. Compound 1 contains tetranuclear Co4(μ3-OH)2(H2O)2 clusters that are inter-linked by pyromellitate bridging ligands into a three-dimensional structure containing one-dimensional tunnels along the a-axis with water and pendant monoprotonated piperazine molecules in the center. The variable temperature magnetic susceptibility was measured from 2 to 300 K at 5000 Oe showing a predominantly anti-ferromagnetic interaction in 1, and the field dependence of magnetization was measured at 2, 5, 15, and 20 K indicating the competition of magnetic interactions in the tetranuclear centers.  相似文献   

16.
The cocondensation reaction of Cu atoms with pure C2H4 and C2H4/Ar mixtures at 10 K is shown by matrix infrared spectroscopy to lead to the first well-characterized examples of binary zerovalent copper — ethylene complexes, (C2H4)nCu (where n = 1, 2 or 3).  相似文献   

17.
C2(a 3πu) disappearance rate constants of 1.44, 0.96, 0.0296, 0.0130 and < 10?6(x10?10cm3s?1) are reported for reactions with C2H4, C2H2, O2, C2H6, and CH4, respectively at 298 K. C2(a 3πu) fragments are generated by multiphoton ArF excimer laser photodissociation at C2H2, and monitored by dye laser induced fluorescence. Arguments are presented which favor chemical reactions over the C2(a 3πu) → (X 1σ+g) quenching channel. C2 + C2H2 represents the one possible exception to the reactive channel.  相似文献   

18.
We report a new synthesis and characterization of Ir(C2H4)2(C5H7O2) [(acetylacetonato)-bis(η2-ethene)iridium(I)], prepared from (NH4)3IrCl6 · H2O in a yield of about 45%. The compound has been characterized by X-ray diffraction crystallography, infrared, Raman, and NMR spectroscopies and calculations at the level of density functional theory. Ir(C2H4)2(C5H7O2) is isostructural with Rh(C2H4)2(C5H7O2), but there is a substantial difference in the ethylene binding energies, with Ir-ethylene having a stronger interaction than Rh-ethylene; two ethylenes are bound to Ir with a binding energy of 94 kcal/mol and to Rh with a binding energy of 70 kcal/mol.  相似文献   

19.
When the products of the reaction between F atoms produced in a microwave discharge and C2H4 are frozen in a large excess of argon at 14 K, new infrared absorptions appear which can be assigned to the 2-fluoroethyl radical. Studies of the dependence of the product distribution on the F-atom concentration have confirmed that the stabilization of C2H4F2 plays only a minor role under the sampling conditions typical of these experiments. Isotopic substitution experiments have demonstrated that the steric configuration about the CH bond is randomized as a result of the F-atom reaction. Upon irradiation of the sample with the full light of a medium-pressure mercury arc, absorptions of vinyl fluoride and acetylene and of the acetylene—HF complex grow in intensity, while those of FCD2CH2 and of FCH2CD2 diminish in intensity and those of FCH2CH2 a nd of FCH2CD2 are unchanged. The F-atom reactions and photolysis processes which occur in these experiments are discussed, and a tunnelling mechanism is proposed to explain the isotopic selectivity in the 2-fluoroethyl photodecomposition. The vibrational spectrum of FCH2CH2 is compared with that derived in a recent ab initio calculation.  相似文献   

20.
A method for the preparation of (C6H5)nPX3-nCr(CO)5 complexes in the crystalline state is described. The carbon-oxygen stretching vibration, vCO(A, eq.), of the complexes with X = Cl, Br, I is mainly determined by the inductive effect of the (C6H5)nPX3-n group. For X = H, the vCO band is defined by the concomitant influence of the σ, π and steric effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号