首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

2.
A variety of continuous parameter Markov chains arising in applied probability (e.g. epidemic and chemical reaction models) can be obtained as solutions of equations of the form
XN(t)=x0+∑1NlY1N ∫t0 f1(XN(s))ds
where l∈Zt, the Y1 are independent Poisson processes, and N is a parameter with a natural interpretation (e.g. total population size or volume of a reacting solution).The corresponding deterministic model, satisfies
X(t)=x0+ ∫t0 ∑ lf1(X(s))ds
Under very general conditions limN→∞XN(t)=X(t) a.s. The process XN(t) is compared to the diffusion processes given by
ZN(t)=x0+∑1NlB1N∫t0 ft(ZN(s))ds
and
V(t)=∑ l∫t0f1(X(s))dW?1+∫t0 ?F(X(s))·V(s)ds.
Under conditions satisfied by most of the applied probability models, it is shown that XN,ZN and V can be constructed on the same sample space in such a way that
XN(t)=ZN(t)+OlogNN
and
N(XN(t)?X(t))=V(t)+O log NN
  相似文献   

3.
Let Ωm be the set of partitions, ω, of a finite m-element set; induce a uniform probability distribution on Ωm, and define Xms(ω) as the number of s-element subsets in ω. We alow the existence of an integer-valued function n=n(m)(t), t?[0, 1], and centering constants bms, 0?s? m, such that
Z(m)(t)=s=0n(m)(t)(Xms?bms)s=0mbms
converges to the ‘Brownian Bridge’ process in terms of its finite-dimensional distributions.  相似文献   

4.
Let ζ(t), η(t) be continuously differentiable Gaussian processes with mean zero, unit variance, and common covariance function r(t), and such that ζ(t) and η(t) are independent for all t, and consider the movements of a particle with time-varying coordinates (ζ(t), η(t)). The time and location of the exists of the particle across a circle with radius u defines a point process in R3 with its points located on the cylinder {(t, u cos θ, u sin θ); t ≥ 0, 0 ≤ θ < 2π}. It is shown that if r(t) log t → 0 as t → ∞, the time and space-normalized point process of exits converges in distribution to a Poisson process on the unit cylinder. As a consequence one obtains the asymptotic distribution of the maximum of a χ2-process, χ2(t) = ζ2(t) + η2(t), P{sup0≤tTχ2(t) ≤ u2} → e?τ if T(?r″(0))12u × exp(?u22) → τ as T, u → ∞. Furthermore, it is shown that the points in R3 generated by the local ?-maxima of χ2(t) converges to a Poisson process in R3 with intensity measure (in cylindrical polar coordinates) (2πr2)?1dtdr. As a consequence one obtains the asymptotic extremal distribution for any function g(ζ(t), η(t)) which is “almost quadratic” in the sense that g1(r cos θ, r sin θ) = 12(r2 ? g(r cos θ, r sin θ)) has a limit g1(θ) as r → ∞. Then P{sup0≤t≤T g(ζ(t), η(t)) ≤ u2} → exp(?(τ) ∫ θ = 0 e?g1(θ) dθ) if T(?r″(0))12u exp(?u22) → τ as T, u → ∞.  相似文献   

5.
Let Ω = {1, 0} and for each integer n ≥ 1 let Ωn = Ω × Ω × … × Ω (n-tuple) and Ωnk = {(a1, a2, …, an)|(a1, a2, … , an) ? Ωnand Σi=1nai = k} for all k = 0,1,…,n. Let {Ym}m≥1 be a sequence of i.i.d. random variables such that P(Y1 = 0) = P(Y1 = 1) = 12. For each A in Ωn, let TA be the first occurrence time of A with respect to the stochastic process {Ym}m≥1. R. Chen and A.Zame (1979, J. Multivariate Anal. 9, 150–157) prove that if n ≥ 3, then for each element A in Ωn, there is an element B in Ωn such that the probability that TB is less than TA is greater than 12. This result is sharpened as follows: (I) for n ≥ 4 and 1 ≤ kn ? 1, each element A in Ωnk, there is an element B also in Ωnk such that the probability that TB is less than TA is greater than 12; (II) for n ≥ 4 and 1 ≤ kn ? 1, each element A = (a1, a2,…,an) in Ωnk, there is an element C also in Ωnk such that the probability that TA is less than TC is greater than 12 if n ≠ 2m or n = 2m but ai = ai + 1 for some 1 ≤ in?1. These new results provide us with a better and deeper understanding of the fair coin tossing process.  相似文献   

6.
For Gaussian vector fields {X(t) ∈ Rn:tRd} we describe the covariance functions of all scaling limits Y(t) = Llimα↓0 B?1(α) Xt) which can occur when B(α) is a d × d matrix function with B(α) → 0. These matrix covariance functions r(t, s) = EY(t) Y1(s) are found to be homogeneous in the sense that for some matrix L and each α > 0, (1) r(αt, αs) = αL1r(t, s) αL. Processes with stationary increments satisfying (1) are further analysed and are found to be natural generalizations of Lévy's multiparameter Brownian motion.  相似文献   

7.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

8.
The operator L?(t, λ) = e?iλ(t, λ) ? 2e?iλtT?(s, x) e(s, t) dvs(x) dm(s) acting on H=∝02πL2(vt), where m and vt, 0 ? t ? 2π are measures on [0, 2π] with m smooth and e(s, t) = exp[?∝tsTdvλ(θ) dm(λ)], satisfies rank(I ? LL1) = rank(I ? L1L) = 1. It is, therefore, unitarily equivalent to a scalar Sz.-Nagy-Foia? canonical model. The purpose of this paper is to determine the model explicitly and to give a formula for the unitary equivalence.  相似文献   

9.
Let γт=(8(logTa-1T+log log T)π2aT)12, 0<aT?T<∞, and {W(t);0?t<∞} be a standard Wiener process. This exposition studies the almost sure behaviour of
inf0?t?T?aTsup0?s?aT γT|W(t+s)?W(t)| as T →∞
, under varying conditions on aT and T/aT. The following analogue of Lévy's modulus of continuity of a Wiener Process is also given:
limh→0inf0?t?1sup0?s?h(8 log h-1π2h)12|W(t+s)?W(t)| = a.s. 1.
and this may be viewed as the exact “modulus of non-differentiability” of a Wiener Process.  相似文献   

10.
Let R(s, t) be a continuous, nonnegative, real valued function on astb. Suppose ?R?s ≥ 0, ?R?t ≤ 0, and ?2R?t ?t ≤ 0 in the interior of the domain. Then the extension of R to a symmetric function on [a, b] × [a, b] is a covariance function. Such a covariance is called biconvex. Let X(t) be a Gaussian process with mean 0 and biconvex covariance. X has a representation as a sum of simple moving averages of white noises on the line and plane. The germ field of X at every point t is generated by X(t) alone. X is locally nondeterministic. Under an additional assumption involving the partial derivatives of R near the diagonal, the local time of the sample function exists and is jointly continuous almost surely, so that the sample function is nowhere differentiable.  相似文献   

11.
A bivariate Gaussian process with mean 0 and covariance
Σ(s, t, p)=Σ11(s, t)ρΣ12(s, t)ρΣ21(s, t)Σ22(s, t)
is observed in some region Ω of R′, where {Σij(s,t)} are given functions and p an unknown parameter. A test of H0: p = 0, locally equivalent to the likelihood ratio test, is given for the case when Ω consists of p points. An unbiased estimate of p is given. The case where Ω has positive (but finite) Lebesgue measure is treated by spreading the p points evenly over Ω and letting p → ∞. Two distinct cases arise, depending on whether Δ2,p, the sum of squares of the canonical correlations associated with Σ(s, t, 1) on Ω2, remains bounded. In the case of primary interest as p → ∞, Δ2,p → ∞, in which case p? converges to p and the power of the one-sided and two-sided tests of H0 tends to 1. (For example, this case occurs when Σij(s, t) ≡ Σ11(s, t).)  相似文献   

12.
Let Πk(t) = ∫t(x?t)dP1k(x), where P is a distribution with P(0)=0. Then Πk(t)k is a non-decreasing function of k, and Πk(kt)k is a non-increasing function of k.  相似文献   

13.
Let X1, X2, X3, … be i.i.d. r.v. with E|X1| < ∞, E X1 = μ. Given a realization X = (X1,X2,…) and integers n and m, construct Yn,i, i = 1, 2, …, m as i.i.d. r.v. with conditional distribution P1(Yn,i = Xj) = 1n for 1 ? j ? n. (P1 denotes conditional distribution given X). Conditions relating the growth rate of m with n and the moments of X1 are given to ensure the almost sure convergence of (1mmi=1 Yn,i toμ. This equation is of some relevance in the theory of Bootstrap as developed by Efron (1979) and Bickel and Freedman (1981).  相似文献   

14.
15.
A theory of scattering for the time dependent evolution equations dudt = iHj(t)u, j = 0, 1 (1) is developed. The wave operators are defined in terms of the evolution operators Uj(t, s), which govern (1). The scattering operator remains unitary. Sufficient conditions for existence and completeness of the wave operators are obtained; these are the main results. General properties, such as the chain rule and various intertwining relations, are also established. Applications include potential scattering (H0(t) = ?Δ, Δ denoting the Laplacian, and H1(t) = ?Δ + q(t, ·)) and scattering for second-order differential operators with coefficients constant in the spatial variable (Hj(t) = ∑m, k = 1n amk(j)(t)(?2?xm ?xk) + bj(t) for j = 0, 1).  相似文献   

16.
We study the nonlinear Volterra equation u′(t) + Bu(t) + ∫0t a(t ? s) Au(s) ds ? F(t) (0 < t < ∞) (′ = ddt), u(0) = u0, (1) as well as the corresponding problem with infinite delay u′(t) + Bu(t) + ∫?∞t a(t ? s) Au(s) ds ? ?(t) (0 < t < ∞), u(t) = h(t) (?∞ < t ? 0). (7) Under various assumptions on the nonlinear operators A, B and on the given functions a, F, f, h existence theorems are obtained for (1) and (7, followed by results concerning boundedness and asymptotic behaviour of solutions on (0 ? < ∞); two applications of the theory to problems of nonlinear heat flow with “infinite memory” are also discussed.  相似文献   

17.
A process which has just one jump, and whose time parameter is the positive quadrant [0, ∞] × [0, ∞], is considered. Following Merzbach, related stopping lines are introduced, and the filtration {Ft1,t23} considered in this paper is such that, modulo completion, the σ-field Ft1,t23 is the Borel field on the region
Lt1,t2={(s1,s2); 0?s1?t1or0?s2?t2}
, together with the atom which is the complement in Ω = [0, ∞]2 of Lt1,t2. Optional and predictable projections of related processes are defined, together with their dual projections, and an integral representation for martingales is obtained.  相似文献   

18.
Let x(t), t = 1,…, T, be generated by a zero mean stationary process and let I(ω) = |Σx(t)expitω|2T be the periodogram. Under general conditions, and in particular assuming only a finite 2nd moment, it is shown that maxωI(ω){2πf(ω)logT} ≤ 1, a.s., and under stricter conditions it is shown that equality holds.  相似文献   

19.
Two related almost sure limit theorems are obtained in connection with a stochastic process {ξ(t), ?∞ < t < ∞} with independent increments. The first result deals with the existence of a simultaneous stabilizing function H(t) such that (ξ(t) ? ξ(0))H(t) → 0 for almost all sample functions of the process. The second result deals with a wide-sense stationary process whose random spectral distributions is ξ. It addresses the question: Under what conditions does (2T)?1?TTX(t)X(t + τ)dt converge as T → ∞ for all τ for almost all sample functions?  相似文献   

20.
Let {X(t), 0 ≤ tT} and {Y(t), 0 ≤ tT} be two additive processes over the interval [0, T] which, as measures over D[0, T], are absolutely continuous with respect to each other. Let μX and μY be the measures over D[0, T] determined by the two processes. The characteristic function of ln(XY) with respect to μY is obtained in terms of the determining parameters of the two processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号