首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derive and justify a normal form reduction of the nonlinear Schrödinger equation for a general pitchfork bifurcation of the symmetric bound state that occurs in a double-well symmetric potential. We prove persistence of normal form dynamics for both supercritical and subcritical pitchfork bifurcations in the time-dependent solutions of the nonlinear Schrödinger equation over long but finite time intervals.  相似文献   

2.
We describe a novel numerical approach to simulations of nonlinear Schrödinger equations with varying coefficients, based on the discovery of a new and intrinsic conservation law for varying coefficient nonlinear Schrödinger equations. The approach is shown to preserve some crucial classical conservations, such as the spatial ergodicity, and utilized in numerical simulations of periodically and quasi-periodically solitary waves for nonlinear Schrödinger equations with periodic or quasi-periodic coefficients. Some numerical experiments are presented to illustrate the conservative property.  相似文献   

3.
This article deals with bifurcation phenomena of asymptotically autonomous differential equations. Under the assumption that the underlying autonomous system admits a bifurcation of pitchfork, saddle node, transcritical or Hopf type, nonautonomous bifurcation results are obtained for both the bifurcation of attraction and repulsion areas and transitions of attractors and repellers.  相似文献   

4.
Two nonlinear Schrödinger equations with variable coefficients are researched, and the various exact solutions (including the bright and dark solitary waves) of the nonlinear Schrödinger equations are obtained with the aid of a subsidiary elliptic-like equation (sub-ODEs for short), at the same time, the constraint conditions which the coefficients of the nonlinear Schrödinger equations with variable coefficients satisfy are presented. The exact solutions and the constraint conditions are helpful in the application of the nonlinear Schrödinger equations with variable coefficients studied in this paper.  相似文献   

5.
In this article, numerical study for both nonlinear space‐fractional Schrödinger equation and the coupled nonlinear space‐fractional Schrödinger system is presented. We offer here the weighted average nonstandard finite difference method (WANSFDM) as a novel numerical technique to study such kinds of partial differential equations. The space fractional derivative is described in the sense of the quantum Riesz‐Feller definition. Stability analysis of the proposed method is studied. To show that this method is reliable and computationally efficient different numerical examples are provided. We expect that the proposed schemes can be applicable to different systems of fractional partial differential equations. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1399–1419, 2017  相似文献   

6.
In 1966, Edward Nelson presented an interesting derivation of the Schrödinger equation using Brownian motion. Recently, this derivation is linked to the theory of optimal transport, which shows that the Schrödinger equation is a Hamiltonian system on the probability density manifold equipped with the Wasserstein metric. In this paper, we consider similar matters on a finite graph. By using discrete optimal transport and its corresponding Nelson's approach, we derive a discrete Schrödinger equation on a finite graph. The proposed system is quite different from the commonly referred discretized Schrödinger equations. It is a system of nonlinear ordinary differential equations (ODEs) with many desirable properties. Several numerical examples are presented to illustrate the properties.  相似文献   

7.
A Poincaré-Lindstedt type technique for partial differential equations is used to study branching phenomena in perturbed dispersive systems arising in hydrodynamic stability theory. Multi-periodic waves with two frequencies which branch from a family of neutrally stable nonlinear periodic plane waves are constructed, the second frequency as a power series expansion in ε. The branching is compared with that of the unperturbed equations described in an earlier paper for the purpose of understanding how higher order perturbation terms effect the properties of the lower order amplitude equations. We find that in general the perturbation terms alter the leading order frequency shifts, thus changing the bifurcation from pitchfork to transverse type. The method is used to study the perturbed nonlinear Schrödinger equation and the perturbed MKdV equation.  相似文献   

8.
In this paper, we study the solitary waves for the generalized nonautonomous dual-power nonlinear Schrödinger equations (DPNLS) with variable coefficients, which could be used to describe the saturation of the nonlinear refractive index and the solitons in photovoltaic-photorefractive ma- terials such as LiNbO3, as well as many nonlinear optics problems. We gen- eralize an explicit similarity transformation, which maps generalized nonau- tonomous DPNLS equations into ordinary autonomous DPNLS. Moreover, solitary waves of two concrete equations with space-quadratic potential and optical super-lattice potential are investigated.  相似文献   

9.
In this work, we implement a relatively new analytical technique, the exp‐function method, for solving nonlinear equations and absolutely a special form of generalized nonlinear Schrödinger equations, which may contain high‐nonlinear terms. This method can be used as an alternative to obtain analytical and approximate solutions of different types of fractional differential equations, which is applied in engineering mathematics. Some numerical examples are presented to illustrate the efficiency and the reliability of exp‐function method. It is predicted that exp‐function method can be found widely applicable in engineering. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1016–1025, 2011  相似文献   

10.
Summary Engineering and physical systems are often modeled as nonlinear differential equations with a vector λ of parameters and operated at a stable equilibrium. However, as the parameters λ vary from some nominal value λ0, the stability of the equilibrium can be lost in a saddle-node or Hopf bifurcation. The spatial relation in parameter space of λ0 to the critical set of parameters at which the stable equilibrium bifurcates determines the robustness of the system stability to parameter variations and is important in applications. We propose computing a parameter vector λ* at which the stable equilibrium bifurcates which is locally closest in parameter space to the nominal parameters λ0. Iterative and direct methods for computing these locally closest bifurcations are described. The methods are extensions of standard, one-parameter methods of computing bifurcations and are based on formulas for the normal vector to hypersurfaces of the bifurcation set. Conditions on the hypersurface curvature are given to ensure the local convergence of the iterative method and the regularity of solutions of the direct method. Formulas are derived for the curvature of the saddle node bifurcation set. The methods are extended to transcritical and pitchfork bifurcations and parametrized maps, and the sensitivity to λ0 of the distance to a closest bifurcation is derived. The application of the methods is illustrated by computing the proximity to the closest voltage collapse instability of a simple electric power system.  相似文献   

11.
A discrete analog of the dressing method is presented and used to derive integrable nonlinear evolution equations, including two infinite families of novel continuous and discrete coupled integrable systems of equations of nonlinear Schrödinger type. First, a demonstration is given of how discrete nonlinear integrable equations can be derived starting from their linear counterparts. Then, starting from two uncoupled, discrete one‐directional linear wave equations, an appropriate matrix Riemann‐Hilbert problem is constructed, and a discrete matrix nonlinear Schrödinger system of equations is derived, together with its Lax pair. The corresponding compatible vector reductions admitted by these systems are also discussed, as well as their continuum limits. Finally, by increasing the size of the problem, three‐component discrete and continuous integrable discrete systems are derived, as well as their generalizations to systems with an arbitrary number of components.  相似文献   

12.
The nonlinear Schrödinger equation is of tremendous interest in both theory and applications. Various regimes of pulse propagation in optical fibers are modeled by some form of the nonlinear Schrödinger equation. In this paper we introduce sequential and parallel split-step Fourier methods for numerical simulations of the nonlinear Schrödinger-type equations. The parallel methods are implemented on the Origin 2000 multiprocessor computer. Our numerical experiments have shown that these methods give accurate results and considerable speedup.  相似文献   

13.
This paper is concerned with the generalized nonlinear Schrödinger equation with parabolic law and dual‐power law. Abundant explicit and exact solutions of the generalized nonlinear Schrödinger equation with parabolic law and dual‐power law are derived uniformly by using the first integral method. These exact solutions are include that of extended hyperbolic function solutions, periodic wave solutions of triangle functions type, exponential form solution, and complex hyperbolic trigonometric function solutions and so on. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial DEs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
We present a class of orthogonal functions on infinite domain based on Jacobi polynomials. These functions are generated by applying a tanh transformation to Jacobi polynomials. We construct interpolation and projection error estimates using weighted pseudo-derivatives tailored to the involved mapping. Then, using the nodes of the newly introduced tanh Jacobi functions, we develop an efficient spectral tanh Jacobi collocation method for the numerical simulation of nonlinear Schrödinger equations on the infinite domain without using artificial boundary conditions. The applicability and accuracy of the solution method are demonstrated by two numerical examples for solving the nonlinear Schrödinger equation and the nonlinear Ginzburg–Landau equation.  相似文献   

15.
In the present paper, exact solutions of fractional nonlinear Schrödinger equations have been derived by using two methods: Lie group analysis and invariant subspace method via Riemann‐Liouvill derivative. In the sense of Lie point symmetry analysis method, all of the symmetries of the Schrödinger equations are obtained, and these operators are applied to find corresponding solutions. In one case, we show that Schrödinger equation can be reduced to an equation that is related to the Erdelyi‐Kober functional derivative. The invariant subspace method for constructing exact solutions is presented for considered equations.  相似文献   

16.
Imperfect bifurcation phenomena are formulated in framework of analytical bifurcation theory on Banach spaces. In particular the perturbations of transcritical and pitchfork bifurcations at a simple eigenvalue are examined, and two-parameter unfoldings of singularities are rigorously established. Applications include semilinear elliptic equations, imperfect Euler buckling beam problem and perturbed diffusive logistic equation.  相似文献   

17.
This paper studies the generalized form of the nonlinear Schrödinger’s equation. The special cases of Kerr law, power law, parabolic law and the dual-power laws are considered. The 1-soliton solution is obtained in all of these four cases. The adiabatic parameter dynamics of the solitons due to perturbation terms are laid down. In addition, the analysis of dark soliton is also carried out. Finally, a few numerical simulations of these equations are given.  相似文献   

18.
A Lotka-Volterra learning-process model was proposed by Monteiro and Notargiacomo in [{\it Commum. Nonlinear Sci. Numer. Simulat.} {\bf 47}(2017), 416-420] to approach learning process as an interplay between understanding and doubt. They studied the stability of the boundary equilibria and gave some numerical simulations but no further discussion for bifurcations. In this paper, we study the qualitative properties of the interior equilibria and a singular line segment completely. Moreover, we discuss their bifurcations such as transcritical, pitchfork, Hopf bifurcation on isolated equilibria and transcritical bifurcation without parameters on non-isolated equilibria. Finally, we also demonstrate these analytical theory by numerical simulations.  相似文献   

19.
For the one‐dimensional nonlinear Schrödinger equations with parity‐time (PT) symmetric potentials, it is shown that when a real symmetric potential is perturbed by weak PT‐symmetric perturbations, continuous families of asymmetric solitary waves in the real potential are destroyed. It is also shown that in the same model with a general PT‐symmetric potential, symmetry breaking of PT‐symmetric solitary waves does not occur. Based on these findings, it is conjectured that one‐dimensional PT‐symmetric potentials cannot support continuous families of non‐PT‐symmetric solitary waves.  相似文献   

20.
We show that the superposition principle applies to coupled nonlinear Schrödinger equations with cubic nonlinearity where exact solutions may be obtained as a linear combination of other exact solutions. This is possible due to the cancelation of cross terms in the nonlinear coupling. First, we show that a composite solution, which is a linear combination of the two components of a seed solution, is another solution to the same coupled nonlinear Schrödinger equation. Then, we show that a linear combination of two composite solutions is also a solution to the same equation. With emphasis on the case of Manakov system of two-coupled nonlinear Schrödinger equations, the superposition is shown to be equivalent to a rotation operator in a two-dimensional function space with components of the seed solution being its coordinates. Repeated application of the rotation operator, starting with a specific seed solution, generates a series of composite solutions, which may be represented by a generalized solution that defines a family of composite solutions. Applying the rotation operator to almost all known exact seed solutions of the Manakov system, we obtain for each seed solution the corresponding family of composite solutions. Composite solutions turn out, in general, to possess interesting features that do not exist in the seed solution. Using symmetry reductions, we show that the method applies also to systems of N-coupled nonlinear Schrödinger equations. Specific examples for the three-coupled nonlinear Schrödinger equation are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号