首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

2.
A variety of continuous parameter Markov chains arising in applied probability (e.g. epidemic and chemical reaction models) can be obtained as solutions of equations of the form
XN(t)=x0+∑1NlY1N ∫t0 f1(XN(s))ds
where l∈Zt, the Y1 are independent Poisson processes, and N is a parameter with a natural interpretation (e.g. total population size or volume of a reacting solution).The corresponding deterministic model, satisfies
X(t)=x0+ ∫t0 ∑ lf1(X(s))ds
Under very general conditions limN→∞XN(t)=X(t) a.s. The process XN(t) is compared to the diffusion processes given by
ZN(t)=x0+∑1NlB1N∫t0 ft(ZN(s))ds
and
V(t)=∑ l∫t0f1(X(s))dW?1+∫t0 ?F(X(s))·V(s)ds.
Under conditions satisfied by most of the applied probability models, it is shown that XN,ZN and V can be constructed on the same sample space in such a way that
XN(t)=ZN(t)+OlogNN
and
N(XN(t)?X(t))=V(t)+O log NN
  相似文献   

3.
We consider a branching diffusion {Zt}t?0 in which particles move during their life time according to a Brownian motion with drift -μ and variance coefficient σ2, and in which each particle which enters the negative half line is instantaneously removed from the population. If particles die with probability c dt+o(dt) in [t,t+dt] and if the mean number of offspring per particle is m>1, then Zt dies out w.p.l. if μ?μ0≡{2σ2c(m?1)}12. If μ<μ0, then itZt grows exponentially with positive probability. Our main concern here is with the critical case where μ=μ0. Even though E{ZT}∽const.T?32 in this case, we find that P{ZT>0} is only exp{–const.T13+0(logT)2}, and conditionally on {ZT>0} there are with high probability much fewer particles alive at time T than E{ZT|ZT0}.  相似文献   

4.
The message m = {m(t)} is a Gaussian process that is to be transmitted through the white Gaussian channel with feedback: Y(t) = ∫0tF(s, Y0s, m)ds + W(t). Under the average power constraint, E[F2(s, Y0s, m)] ≤ P0, we construct causally the optimal coding, in the sense that the mutual information It(m, Y) between the message m and the channel output Y (up to t) is maximized. The optimal coding is presented by Y(t) = ∫0t A(s)[m(s) ? m?(s)] ds + W(t), where m?(s) = E[m(s) ¦ Y(u), 0 ≤ u ≤ s] and A(s) is a positive function such that A2(s) E |m(s) ? m?(s)|2 = P0.  相似文献   

5.
Two related almost sure limit theorems are obtained in connection with a stochastic process {ξ(t), ?∞ < t < ∞} with independent increments. The first result deals with the existence of a simultaneous stabilizing function H(t) such that (ξ(t) ? ξ(0))H(t) → 0 for almost all sample functions of the process. The second result deals with a wide-sense stationary process whose random spectral distributions is ξ. It addresses the question: Under what conditions does (2T)?1?TTX(t)X(t + τ)dt converge as T → ∞ for all τ for almost all sample functions?  相似文献   

6.
For Gaussian vector fields {X(t) ∈ Rn:tRd} we describe the covariance functions of all scaling limits Y(t) = Llimα↓0 B?1(α) Xt) which can occur when B(α) is a d × d matrix function with B(α) → 0. These matrix covariance functions r(t, s) = EY(t) Y1(s) are found to be homogeneous in the sense that for some matrix L and each α > 0, (1) r(αt, αs) = αL1r(t, s) αL. Processes with stationary increments satisfying (1) are further analysed and are found to be natural generalizations of Lévy's multiparameter Brownian motion.  相似文献   

7.
Let ζ(t), η(t) be continuously differentiable Gaussian processes with mean zero, unit variance, and common covariance function r(t), and such that ζ(t) and η(t) are independent for all t, and consider the movements of a particle with time-varying coordinates (ζ(t), η(t)). The time and location of the exists of the particle across a circle with radius u defines a point process in R3 with its points located on the cylinder {(t, u cos θ, u sin θ); t ≥ 0, 0 ≤ θ < 2π}. It is shown that if r(t) log t → 0 as t → ∞, the time and space-normalized point process of exits converges in distribution to a Poisson process on the unit cylinder. As a consequence one obtains the asymptotic distribution of the maximum of a χ2-process, χ2(t) = ζ2(t) + η2(t), P{sup0≤tTχ2(t) ≤ u2} → e?τ if T(?r″(0))12u × exp(?u22) → τ as T, u → ∞. Furthermore, it is shown that the points in R3 generated by the local ?-maxima of χ2(t) converges to a Poisson process in R3 with intensity measure (in cylindrical polar coordinates) (2πr2)?1dtdr. As a consequence one obtains the asymptotic extremal distribution for any function g(ζ(t), η(t)) which is “almost quadratic” in the sense that g1(r cos θ, r sin θ) = 12(r2 ? g(r cos θ, r sin θ)) has a limit g1(θ) as r → ∞. Then P{sup0≤t≤T g(ζ(t), η(t)) ≤ u2} → exp(?(τ) ∫ θ = 0 e?g1(θ) dθ) if T(?r″(0))12u exp(?u22) → τ as T, u → ∞.  相似文献   

8.
Let {Zt} be an increasing Markov process on N n and {σ(k)} the corresponding sequence of jump times. Let the increments of Zt be i.i.d. with finite expectation and covariances, and let
E(σ(k+1)?σ(k)|Z0,Zσ(1),…Zσ(k)=hZσ(k)|Zσ(k)|?(|Zσ(k)|)?1
where h and ? are sufficiently smooth positive functions and ?Zt? = ∑nj=1Zt(j), Zt=(Zt(1),…,Zt(n)). While a linear f results in asymptotically exponential growth, a suitable class of sublinear f leads to a growth asymptotically at most that of a power. Covering both cases, we obtain analoga of the strong LLN, the CLT and LIL.  相似文献   

9.
Let H be a self-adjoint operator on a complex Hilbert space H. The solution of the abstract Schrödinger equation idudt = Hu is given by u(t) = exp(?itH)u(0). The energy E = ∥u(t)∥2 is independent of t. When does the energy break up into different kinds of energy E = ∑j = 1NEj(t) which become asymptotically equipartitioned ? (That is, Ej(t) → ENas t → ± ∞ for all j and all data u(0).) The “classical” case is the abstract wave equation d2vdt2 + A2v = 0 with A self-adjoint on H1. This becomes a Schrödinger equation in a Hilbert space H (essentially H is two copies of H1), and there are two kinds of associated energy, viz., kinetic and potential. Two kinds of results are obtained. (1) Equipartition of energy is related to the C1-algebra approach to quantum field theory and statistical mechanics. (2) Let A1,…, AN be commuting self-adjoint operators with N = 2 or 4. Then the equation Πj = 1N (ddt ? iAj) u(t) = 0 admits equipartition of energy if and only if exp(it(Aj ? Ak)) → 0 in the weak operator topology as t → ± ∞ for jk.  相似文献   

10.
Let {X(t) : t ∈ R+N} denote the N-parameter Wiener process on R+N = [0, ∞)n. For multiple sequences of certain independent random variables the authors find lower bounds for the distributions of maximum of partial sums of these random variables, and as a consequence a useful upper bound for the yet unknown function P{supt∈DnX(t) ≥ c}, c ≥ 0, is obtained where DN = Πk = 1N [0, Tk]. The latter bound is used to give three different varieties of N-parameter generalization of the classical law of iterated logarithm for the standard Brownian motion process.  相似文献   

11.
12.
Let (μt)t=0 be a k-variate (k?1) normal random walk process with successive increments being independently distributed as normal N(δ, R), and μ0 being distributed as normal N(0, V0). Let Xt have normal distribution N(μt, Σ) when μt is given, t = 1, 2,….Then the conditional distribution of μt given X1, X2,…, Xt is shown to be normal N(Ut, Vt) where Ut's and Vt's satisfy some recursive relations. It is found that there exists a positive definite matrix V and a constant θ, 0 < θ < 1, such that, for all t?1,
|R12(V?1t?V?1R12|<θt|R12(V?10?V?1)R12|
where the norm |·| means that |A| is the largest eigenvalue of a positive definite matrix A. Thus, Vt approaches to V as t approaches to infinity. Under the quadratic loss, the Bayesian estimate of μt is Ut and the process {Ut}t=0, U0=0, is proved to have independent successive increments with normal N(θ, Vt?Vt+1+R) distribution. In particular, when V0 =V then Vt = V for all t and {Ut}t=0 is the same as {μt}t=0 except that U0 = 0 and μ0 is random.  相似文献   

13.
Given a cocycle a(t) of a unitary group {U1}, ?∞ < t < ∞, on a Hilbert space H, such that a(t) is of bounded variation on [O, T] for every T > O, a(t) is decomposed as a(t) = f;t0Usxds + β(t) for a unique x ? H, β(t) yielding a vector measure singular with respect to Lebesgue measure. The variance is defined as σ2({rmUt}, a(t)) = limT→∞(1T)∥∝t0 Us x ds∥2 if existing. For a stationary diffusion process on R1, with Ω1, the space of paths which are natural extensions backwards in time, of paths confined to one nonsingular interval J of positive recurrent type, an information function I(ω) is defined on Ω1, based on the paths restricted to the time interval [0, 1]. It is shown that I(Ω) is continuous and bounded on Ω1. The shift τt, defines a unitary representation {Ut}. Assuming Ω1 I dm = 0, dm being the stationary measure defined by the transition probabilities and the invariant measure on J, I(Ω) has a C spectral density function f;. It is then shown that σ2({Ut}, I) = f;(O).  相似文献   

14.
Consider a random Hamiltonian HN(σ) for σ∈ΣN={0,1}N. We assume that the family (HN(σ)) is jointly Gaussian centered and that for σ1,σ2∈ΣN,N?1EHN(σ1)HN(σ2) =ξ(N?1i?Nσ1iσ2i) for a certain function ξ on R. F. Guerra proved the remarkable fact that the free energy of the system with Hamiltonian HN(σ)+h∑i?Nσi is bounded below by the free energy of the Parisi solution provided that ξ is convex on R. We prove that this fact remains (asymptotically) true when the function ξ is only assumed to be convex on R+. This covers in particular the case of the p-spin interaction model for any p. To cite this article: M. Talagrand, C. R. Acad. Sci. Paris, Ser. I 337 (2003).  相似文献   

15.
16.
17.
Let γт=(8(logTa-1T+log log T)π2aT)12, 0<aT?T<∞, and {W(t);0?t<∞} be a standard Wiener process. This exposition studies the almost sure behaviour of
inf0?t?T?aTsup0?s?aT γT|W(t+s)?W(t)| as T →∞
, under varying conditions on aT and T/aT. The following analogue of Lévy's modulus of continuity of a Wiener Process is also given:
limh→0inf0?t?1sup0?s?h(8 log h-1π2h)12|W(t+s)?W(t)| = a.s. 1.
and this may be viewed as the exact “modulus of non-differentiability” of a Wiener Process.  相似文献   

18.
According to a result of A. Ghizzetti, for any solution y(t) of the differential equation where y(n)(t)+ i=0n?1 gi(t) yi(t)=0 (t ? 1), 1 ¦gi(x)¦xn?I?1 dx < ∞ (0 ?i ? n ?1, either y(t) = 0 for t ? 1 or there is an integer r with 0 ? r ? n ? 1 such that limt → ∞ y(t)tr exists and ≠0. Related results are obtained for difference and differential inequalities. A special case of the former has interesting applications in the study of orthogonal polynomials.  相似文献   

19.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

20.
We suppose that K is a countable index set and that Λ = {λk¦ k ? K} is a sequence of distinct complex numbers such that E(Λ) = {eλkt¦ λk ? Λ} forms a Riesz (strong) basis for L2[a, b], a < b. Let Σ = {σ1, σ2,…, σm} consist of m complex numbers not in Λ. Then, with p(λ) = Πk = 1m (λ ? σk), E(Σ ∪ Λ) = {eσ1t…, eσmt} ∪ {eλktp(λk)¦ k ? K} forms a Riesz (strong) bas Sobolev space Hm[a, b]. If we take σ1, σ2,…, σm to be complex numbers already in Λ, then, defining p(λ) as before, E(Λ ? Σ) = {p(λk) eλkt¦ k ? K, λk ≠ σj = 1,…, m} forms a Riesz (strong) basis for the space H?m[a, b]. We also discuss the extension of these results to “generalized exponentials” tneλkt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号