首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Absolute cross sections were measured for beam attenuation, MX+(1Σg+) chemiionization and MX(A2Π) chemiluminescence. The latter disagree strikingly with predictions based on adiabatic correlations. Information theoretic analysis shows some channels to be statistically, other highly non-statistically populated. A qualitative MO model is in accord with these findings.  相似文献   

2.
The fluorescence transitions corresponding to the second positive system of N2 (C3Πu → B3Πg) for Δv = 0, 1 and the first negative system of N+2(B2Σ+u → X2Σ+g) for Δv = 0, 1, 2 have been observed following laser-induced mul excitation of N2.  相似文献   

3.
New rotational analyses have been made of the B3Π0+u—X1Σ+g systems of 79Br2, 81Br2 and 127I2. The density of vibrational states near the dissociation limit in the upper states follows the LeRoy—Bernstein predictions for n = 5. From short extrapolations, the ground state dissociation energies are found to be: D0(79Br81Br) = 15895.6 cm?1, D0(127I2) = 12440.1 cm?1.  相似文献   

4.
Two series of emission bands were observed for the CS2/Ar(1 : 100–500) system at 15 K with excitation at 257.3 nm. They are assigned to B3Σ?u → χ3Σ?g and B″3Πu → X3Σ?g of S2, which was formed by photodissociation of CS2, CS2 + hv → CS + S, followed by recombination of two S atoms. The B″3Πu state has been found 524 cm-1 lower in energy than B3Σ?u  相似文献   

5.
The 6Li2 A1Σu+ υA = 2, J = 33 and υA = 9, J = 20 levels are shown to be spin—orbit perturbed by the b3Πu υb = 9, F1e N = 32 and υb = 15, F1e N = 19 levels from which an electronic matrix element of <b3Πoc|HSO|A1Σ+ > = 0.114±0.006 cm?1 is determined. Previous estimates of this quantity are shown to be incorrect. Although the main and extra levels are separated by less than the 900 K Doppler width of A1Σu+ ? X1Σg+ rotational lines, sub-Doppler intermodulated fluorescence and perturbation-facilitated optical—optical double resonance spectra allow direct observation of the separation of main and extra levels. The mixing coefficients and other perturbation parameters are inferred from a steady state kinetic model of the composite main plus extra lineshape.  相似文献   

6.
The intensity of the chemiluminescence continua from the title reactions was measured in crossed effusive molecular beams as a function of halogen beam flux. The dominant quadratic pressure dependence of the Ba + Cl2, Br2, I2 reactions at halogen densities as low as ≈ 1011 molecules/cm3 indicates a three-body process (rapid collissional stabilization of a very long-lived collision complex) as the major mode of MX*2 formation, while a two-body process is discernible at the lowest X2 gas densities. The mechanism is discussed in some detail.  相似文献   

7.
Addition of C2F4 to a flowing nitrogen afterglow gives rise to CN(E2ΣA2Π, X2Σ), CN(F2 ΔA2Π) and C (156.1, 165.5 and 193.0 nm) chemiluminescence. Transitions have been observed from CN(E2Σ) up to ν′ = 2 from which vibrational constants for this state have been recalculated to be ωeχe = 13.8 cm?1 and ωe = 1698.4 cm?1. Ground state and metasrable C(3P, 1D) have been detected and studied via resonance fluorescence. Addition of O2 to the N/C2F4 reaction system reduces C and CN emission intensities and [C] while giving rise to CO(a3Π-X1Σ), CO(A1ΠX1Σ) and NO(B2ΠX2Π) emission. Probable excitation mechanisms are discussed.  相似文献   

8.
By measuring the relative CO quantum yields from ketene photolysis as a function of photolysis wavelength we have determined the threshold energy at 25° for CH2CO(1A1) → CH2(3B1) + CO(1Σ+) to be 75.7 ± 1.0 kcal/mole. This corresponds to a value of 90.7 ± 1.0 kcal/mole for ΔHf2980[CH2(3B1)]. By measuring the relative ratio of CH2(1A1)/CH2(3B1) from ketene photolysis as a function of photolysis wavelength we have determined the threshold energy at 25°C for CH2CO(1A1) → CH2(1A1) + CO(1Σ+) to be 84.0 ± 0.6 kcal/mole. This corresponds to a value of 99.0 ± 0.6 kcal/mole for ΔHf2980[CH2(1A1)]. Thus a value for the CH2(3B1) ? CH2(1A1) energy splitting of 8.3 ± 1 kcal/mole is determined, which agrees with three other recent independent experimental estimates and the most recent quantum theoretical calculations.  相似文献   

9.
The energy transfer reation of He(23S) + CS was studied spectroscopically in a flowing afterglow apparatus. The CS+(B2Σ+ → A 2Πi) transition is identified via three members of the Δν = 0 sequence (406–415 nm). The spin-orbit splitting of the (0, 0) band of CS+(A 2Πi) is 301 ± 5 cm?1. A weak emitting system (280–340 nm) is tentatively identified as CS+(B2Σ+→ X2Σ+).  相似文献   

10.
A comparative spectroscopic study in the visible and ultraviolet ranges was conducted on the flowing afterglows resulting from the reactions of He(2 3S) and Ne(3P0,2) metastables with CS2. Penning ionization was found to be the predominant energy transfer process. However, electron—ion recombination within the afterglows constitutes a major secondary process and gives rise to the most intense emitting system, CS(A 1 Π → X 1Σ+). Both afterglows were found to produce the CS+2(B2Σ+u-X2Πg), CS+2(A2Πu-X2Πg) and CS(a 3Π-X 1Σ+) emission systems as well as some atomic sulfur emission lines. Some intensity differences were observed and are interpreted in terms of energetics and the formation mechanisms of the emitting species. A moderately strong CS+(A 2Πi-X 2Σ+) emission system was also observed in the ehlium afterglow. In addition, a weak, sharp group of bands in the 390–420 nm range in the helium afterglow has been determined to be due to the presence of a small amount of He+ ions. This group of bands consists of two overlapping emission systems and are identified as CS(B 1Σ+ → A 1Π) and CS+(B 2Σ+ → A 2Πi).  相似文献   

11.
By exciting Rb2 in a supersonic nozzle beam with a pulsed dye laser in the C 1Πu-X 1Σ+g and the D 1Πu-X 1Σ+g band system, we find evidence tor different predissociation processes The products appear as follows from the C state, Rb* (5 2P32) exclusively, and from the D state Rb*(42D32) predominantly, followcd by Rb*(5 2Pi-52S) cascade radiation In addition, a lower bound of De(Rb2X1Σ+g)? 3939± 10 cm?1 is obtained.  相似文献   

12.
Silicon atoms react under single collision conditions with N2O to yield chemiluminescent emission corresponding to the SiO a3Σ+?X1Σ+ and b3Π?X1Σ+ intercombination systems and the A1Π?X1Σ+ band system. A most striking feature of the SiN2O reaction is the energy balance associated with the formation of SiO product molecules in the A1Π and b3Π states. A significant energy discrepancy ( = 10000 cm? = 1.24 eV) is found between the available energy to populate the highest energetically accessible excited-state quantum levels and the highest quantum level from which emission is observed. It is suggested that this discrepancy may result from the formation of vibrationally excited N2 in a concerted fast SiN2O reactive encounter. Emission from the SiO a3Σ+ (A1Π) and b3Π(A1Π, E1Σ0+) triplet-state manifold results primarily from intensity borrowing involving the indicated singlet states. Perturbation calculations indicate the magnitude of the mixing between the b3Π, A1Π and E1Σ0+ states ranges between 0.5 and 2%. On the basis of these calculations, the branching ratio (excited triplet)/(excited singlet) is found to be well in excess of 500. An approximate vibrational population distribution is deduced for those molecules formed in the b3Π state. The present studies are correlated with those of previous workers in order to provide an explanation for diverse relaxation effects as well as observed changes in the ratio of a3Σ+ to b3Π emission as a function of pressure and experimental environment. Some of these effects are attributable to a strong coupling between the a3Σ+ and b3Π state. Based on the current results, there appears to be little correlation between either (1) the branching ratio for excited state formation or (2) the total absolute cross section for excited-state formation and (3) the measured quantum yield for the SiN2O reaction. Implications for chemical laser development are considered.  相似文献   

13.
By measurement of infrared chemiluminescence we have obtained for the branching ratio of the room temperature reaction H + Br2 (1), k*1/k1 = 0.015 ± 0.004 and for H + HBr (2), k*2/k2 ? 0.013. For H + Br2 → HBr(υ· ? 6) + Br (1), the detailed rate constant k* = 6) = 0.014 ± 0.003 relative to k· = 4) = 100.  相似文献   

14.
The Equations of Motion method has been applied in the calculation of potential energy curves for the X2Σ+g, A2Πu and B2Σ+u states of N+2. Results are also reported for a new dissociative 2Σ+g state. The theoretical curves are directly compared with the experimental ones as well as in terms of spectroscopic constants. The applicability of the Equations of Motion method to this type of problem is critically examined and discussed with regard to the choice of basis set, numerical effort and agreement with experiment.  相似文献   

15.
CW dye laser induced fluorescence emission and thermal emission spectra of YO-molecules in a 1 atm H2O2Ar flame of 2430 K were recorded simultaneously. Narrow band laser excitation was applied to four rotational lines in the (1, 1) Q-branch of the A2Π32X2Σ+ transition and broadband excitation was applied to several separate Q-branches of the A2Π12,32X2Σ+ transitions. From the differences between the fluorescence emission spectra and thermal emission spectra, we conclude that collisional de-excitation of an excited vibronic level takes place by vibrational relaxation, decay to the electronic ground state and by intermultiplet transfer in order of increasing probability.  相似文献   

16.
Visible chemiluminescence in the 5800-6600 Å region was observed from the Ca+Cl2 reaction in an argon matrix. The longer wavelength doublet progression is assigned as the A2Π3/2, 1/2X2Σ+ transition of CaCl, with v00= 16189 and 16126 cm?1, respectively. Emission from the vibrationally excited v' = 1 level of the A state was also observed. This is the first observation of resolved spin-orbit components in matrix chemiluminescent reactions. The progression with v00=16855 cm?1 was assigned as the B2Σ+X2Σ+ transition of CaCl. Both transitions showed very small matrix shifts in the T2 values. A weak band at 17185 cm?1 was assigned as either the E2Σ→B2Σ+ or the a4Σ+A2Π transition of CaCl. Ca atomic emission at 4232 and 6574 Å was also observed and it was attributed to the energy transfer processes from excited CaCl radicals.  相似文献   

17.
The chemiluminescent spectra of C*2, d 3Πg-a 3Πu, Δv = O sequence from the reaction Na + CCl4 have been obtained. The C*2, d 3Πg,v' = 6 level is formed preferentially. The quenching and vibrational relaxation rates of the C*2, d 3Πg state in Ar are 1.9 × 106 and 2.2 × 106 Torr?1 s?1, respectively. Na is one of the most efficient species for deactivation of C*2.  相似文献   

18.
New oxysilicates with the general formula ALa3Bi(SiO4)3O and ALa2Bi2(SiO4)3O [ACa, Sr and Ba] are synthesized and characterized. Powder X-ray diffraction of these silicates show that they are isostructural with BiCa4(VO4)3O which has an apatite-related structure. Eu3+ luminescence in the newly synthesized oxysilicates show broad emission lines due to disorder of cations. The relatively high intense magnetic dipole transition 5D07F1 points to a more symmetric environment. The photoluminescence results confirm that the compounds have apatite-related crystal structure.  相似文献   

19.
Time-resolved investigations of the atomic resonance fluorescence Sr(53P1 → 51S0) and the molecular chemiluminescence from SrCl(A2Π1/2,3/2, B2Σ+ → X2Σ+) are reported following the reaction of the electronically excited strontium atom, Sr(5s5p(3PJ)), 1.807 eV above its 5s2(1S0) electronic ground state, with CH2Cl2. The optically metastable strontium atom was generated by pulsed dye-laser excitation of ground state strontium vapor to the Sr(53P1) state at λ = 689.3 nm (Sr(53P1 ← 51S0)) at elevated temperature (850 K) in the presence of excess helium buffer gas in which rapid Boltzmann equilibration within the 53PJ manifold takes place. Sr(53PJ) was then monitored by time-resolved atomic fluorescence from Sr(53P1) at the resonance wavelength together with chemiluminescence from electronically excited SrCl resulting from reaction of the excited atom with CH2Cl2. The molecular systems recorded in the time-domain were SrCl(A2Π1/2 → X2Σ+) (Δν = 0, λ = 674 nm), SrCl(A2Π3/2 → X2Σ+) (Δν = 0, λ = 660 nm), and SrCl(B2Σ+ → X2Σ+) (Δν = 0, λ = 636 nm). Both the A2Π (179.0 kJ mol?1) and (B2Σ+(188.0) kJ mol?1) states of SrCl are energetically accessible on collision between Sr(3P) and CH2Cl2. Exponential decay profiles for both the atomic and molecular (A,B – X) chemiluminescence emission are observed and the first-order decay coefficients characterized in each case. These are found to be equal under identical conditions and hence SrCl(A2Π, B2Σ+) are shown to arise from direct Cl-atom abstractions on reaction with this halogenated species. The combination of integrated molecular and atomic intensity measurements, coupled with optical sensitivity calibration, yields estimations of the branching ratios into the A1/2,3/2, B, and X states arising from Sr(53 PJ) + CH2Cl2 which are found to be as follows: A1/2, 3.0 × 10?3; A3/2, 1.7 × 10?3; B, 4.4 × 10?4 yielding ΣSrCl(A1/2 + A3/2 + B) = 5.1 × 10?3. As only the X, A and B states of SrCl are accessible on reaction, this indicates an upper limit for the branching ratio into the ground state of 0.995. The present results are compared with previous time-resolved measurements on SrF, Cl, Br(A2Π,B2Σ+ ? X2Σ+) that we have reported on various halogenated species and with analogous chemiluminescence studies on Sr(3P) with other halides obtained from molecular beam measurements. The results are further compared with those from a series of previous analogous investigations in the time-domain we have presented of molecular emissions from CaF, Cl, Br, I (A,B – X) arising from the collisions of Ca(43PJ) with appropriate halides and with branching ratio data for Ca(43PJ) obtained in beam measurements. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The reactions of the lowest metastable states of Ar, Kr and Xe with XeF2 were studied in a flowing afterglow apparatus; XeF emission (from D2Π12 and B 2Π+ states) was observed in all cases. The total rate constants (cm3 molecule?1 s?1) for XeF* formation were determined as 75 × 10?11 ? Xe(3P2);64 × 10?11 ? Kr(3P2) and 20 × 10?11 ? Ar(3P0,2). The reactions of Ar(3P0,2) and Kr(3P2) with XeF2 also gave ArF* and KrF*, respectively. Analysis of these emissions indicates that at least two different mechanisms are operative: reactive quenching by the ionic—covalent curve-crossing mechanism and excitation transfer. The Ar(3P0,2 + XeF2 reaction is a sufficiently strong source of XeF(D—X) emission that the main features of the XeF(D2Π12 ? X2Σ+) system could be photographed and tentative assignments of these vibrational bands are given. The XeF(D → B) emission could not be observed and the ratio of the D—X versus the D—B transition probability must be > 1000 : 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号