共查询到18条相似文献,搜索用时 93 毫秒
1.
锂离子电池的性能主要由正、负极材料决定,负极材料Co3O4具备理论容量高、振实密度大、化学性质稳定等特点倍受关注,但存在导电性不好、倍率性能较差等缺点. 解决该问题的手段:一方面可通过材料的纳米化与特殊形貌化如球状、纤维状、片状等,缩短锂离子嵌入和脱出行程;另一方面可通过材料的复合化,促进电子的快速传输和缓冲活性材料在充放电过程中的体积效应. 根据Co3O4颗粒的形貌特性对现有研究进行了分类与综述,阐述了改性手段的可能性机理,并对如何提高Co3O4的电化学性能提出了一些想法. 相似文献
2.
3.
4.
本文以草酸锂、五氧化二钒、硼酸为原料,二水合草酸为碳原和还原剂,无水乙醇为分散剂,采用球磨法合成了Li3V2(BO3)3/C(LVB/C)复合材料前驱体,后经高温热处理得到LVB/C复合材料. 采用TG-DTA技术对前驱体进行了热分析,通过XRD、SEM、EDS等技术研究了烧结条件对 LVB/C 材料的晶体结构、微观形貌、含碳量的影响. 通过恒流充放电测试、循环性能测试、循环伏安测试和电化学阻抗测试等技术研究了烧结条件对 LVB/C 材料电化学性能的影响. 电化学测试结果表明,800 ℃下烧结10 h得到的样品电化学性能最佳,在50mA•g-1电流密度下,首次充放电比容量分别为427.6mAh•g-1和669.1 mAh•g-1,循环10次后,容量保持率分别为55.4 %和35.2 %. 相似文献
5.
将LiNO3和Ti(OC4H9)4填填充在有序介孔碳CMK-3 孔道中, 然后烧结合成了Li4Ti5O12/CMK-3复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征. 利用差热-热重分析(TG-DTA)测试复合材料中Li4Ti5O12的含量. 利用充放电测试、循环伏安和电化学阻抗技术考察了复合材料作为锂离子电池负极材料的性能. 发现Li4Ti5O12分布在CMK-3孔道中及其周围, 复合材料的高倍率充放电性能显著优于商品Li4Ti5O12, 复合材料中Li4Ti5O12的比容量明显高于除去CMK-3的样品(在1C倍率时比容量为117.8 mAh·g-1), 其0.5C、1C和5C倍率的放电比容量分别为160、143 和131 mAh·g-1, 库仑效率接近100%, 5C倍率时循环100次的容量损失率只有0.62%. 本研究结果表明CMK-3明显提高了Li4Ti5O12的高倍率充放电性能, 可能是CMK-3特殊的孔道结构和良好的导电性减小了Li4Ti5O12的粒径并提高了其电导率. 相似文献
6.
本文通过乙酸锂与二氧化钛反应,采用一步高温固相法在不同反应温度(750 °C/800 °C/850 °C)和反应气氛(氮气/空气)下合成Li4Ti5O12材料. 通过热重分析、X射线衍射、扫描电子显微镜、循环伏安曲线和充放电曲线分析了Li4Ti5O12的晶体结构,观察其微观形貌,并测试其电化学性能. 结果表明,800 °C氮气烧结得到的Li4Ti5O12(L-800N)材料粒径较小,该材料在1.0C倍率下的首周期放电比容量达到170.7 mAh·g-1,100周期循环后的容量保持率高达94.6%,即使是10C高倍率其首周期放电容量依然有143.0 mAh·g-1,表现出了良好的倍率和循环寿命性能. 相似文献
7.
锂离子电池负极材料Cu2O的制备及电化学性能 总被引:2,自引:1,他引:1
采用多元醇法,以丙三醇、氢氧化钠、硫酸铜为原料,在油浴中共热制备Cu2O.通过X射线衍射分析(XRD)和电化学测试对材料进行了表征.结果表明,丙三醇能够将Cu^2+还原为Cu^+.并且,采用该方法制备出的Cu2O材料作为锂电池负极材料,具备较好的循环性能. 相似文献
8.
9.
以葡萄糖作为碳源,通过简单的水热反应获得菱形碳包覆碳酸钴(CoCO3/C)复合材料,并研究了其作为锂离子电池负极材料的电化学性能.晶型和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,用热重-差热分析法(TG-DTA)来测试CoCO3/C材料中碳的含量,用拉曼光谱分析无定型碳的存在. Barrett-Joyner-Halenda (BJH)则用来分析材料的孔径分布情况.实验表明,碳包覆不仅在CoCO3颗粒表面包覆了一层无定性碳,使得CoCO3材料在充放电过程中保持结构的稳定性,也形成了一些大约30 nm左右的介孔,这种孔的存在有助于电解液中离子的传输,从而提高材料的电化学性能.电极材料在0.90C(1.00C = 450 mAh•g-1)倍率下进行循环测试, 500次后的容量仍保持在539 mAh•g-1,显示出了较好的循环性能.当增加到3.00C倍率时CoCO3/C容量为130 mAh•g-1,再恢复到0.15C倍率时容量依然能够达到770 mAh•g-1,表现出了CoCO3/C具有良好的稳定性. 相似文献
10.
11.
以纳米Si颗粒为核心,正硅酸四乙酯(TEOS)为SiO_2源,采用Stober法在Si表面包覆一层SiO_2,再以多巴胺为碳源,通过碳化处理将SiO_2表面的聚多巴胺层转化成碳层。最后,用HF刻蚀SiO_2并留下空隙,得到Si@void@C复合纳米颗粒。利用X射线衍射、扫描电镜、透射电镜和恒流充放电测试对材料的物相、微观形貌和电化学性能进行表征。结果表明,在0.1 A·g~(-1)电流密度下,Si@void@C负极材料充放电循环100次后充电比容量仍然有1 319.5 mAh·g~(-1),容量保持率为78.4%,表现出优异的电化学性能。 相似文献
12.
以纳米Si颗粒为核心,正硅酸四乙酯(TEOS)为SiO2源,采用Stober法在Si表面包覆一层SiO2,再以多巴胺为碳源,通过碳化处理将SiO2表面的聚多巴胺层转化成碳层。最后,用HF刻蚀SiO2并留下空隙,得到Si@void@C复合纳米颗粒。利用X射线衍射、扫描电镜、透射电镜和恒流充放电测试对材料的物相、微观形貌和电化学性能进行表征。结果表明,在0.1 A·g-1电流密度下,Si@void@C负极材料充放电循环100次后充电比容量仍然有1 319.5 mAh·g-1,容量保持率为78.4%,表现出优异的电化学性能。 相似文献
13.
锂离子电池正极材料的晶体结构及电化学性能 总被引:6,自引:0,他引:6
正极材料是锂离子电池的重要组成部分。作为提供自由脱嵌锂离子的正极材料,其晶体结构的特点决定了锂离子脱嵌路径方式的不同,并对锂离子电池的电化学性能等产生明显影响。本文根据正极材料的晶体结构和锂离子“脱嵌/嵌入”路径方式的不同,重点讨论了一维隧道结构、二维层状结构和三维框架结构正极材料的晶体结构特点、锂离子“脱嵌/嵌入”路径和其电化学性能之间的关系,主要包括一维隧道结构正极材料LiFePO4,二维层状结构正极材料LiMO2(M=Co, Ni, Mn)、Li1+xV3O8和Li2MSiO4 (M=Fe, Mn) 以及三维框架结构正极材料LiMn2O4和Li3V2(PO4)3。揭示了目前锂离子电池正极材料的研究现状和存在问题,并对今后的发展方向进行了评述。 相似文献
14.
锂离子电容电池兼具锂离子电池和超级电容器的优势,凭借高能量密度、高功率密度、长循环寿命和快速充放电等优势成为具有前景的新型储能系统。然而,电池型电极和电容型电极之间的动力学不平衡、能量密度不太理想和循环稳定性较差等关键问题仍然存在,若要有效解决该问题需要在该领域开发出新型正负极电极材料。因此,本文详细介绍了锂离子电容电池正负极材料(例如金属氧化物、碳材料、硫化物等)的研究进展以及技术路线,并针对目前存在的问题进行了分析,同时对电极材料未来的研究方向进行了展望,以及对其他化学电源的研究提供了新思路和手段。 相似文献
15.
以十六烷基三甲基溴化铵(CTAB)为模板,硝酸铁和硝酸铜为起始物,采用一步微波法,再经过简单的热处理制备了CuFe2O4负极材料,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)等测试技术表征材料的结构和形貌。 电化学测试表明,在100 mA/g电流密度,0.01~3.0 V电压条件下,材料的首周嵌脱锂比容量分别为1202.2和873.2 mA·h/g,循环50周后,嵌锂比容量仍保持在近650 mA·h/g,显示出优异的电化学性能。 相似文献
16.
17.
Prof. Bo Wang Sisi Hu Lin Gu Dr. Di Zhang Dr. Yazhao Li Prof. Huilan Sun Prof. Wen Li Dr. Qiujun Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(71):17097-17102
Reasonably designing and synthesizing advanced electrode materials is significant to enhance the electrochemical performance of lithium ion batteries (LIBs). Herein, a metal–organic framework (MOF, Mil-125) was used as a precursor and template to successfully synthesize the porous mooncake-shaped Li4Ti5O12 (LTO) anode material assembled from nanoparticles. Even more critical, SmF3 was used to modify the prepared porous mooncake-shaped LTO material. The SmF3-modified LTO maintained a porous mooncake-shaped structure with a large specific surface area, and the SmF3 nanoparticles were observed to be attach on the surface of the LTO material. It has been proven that the SmF3 modification can further facilitate the transition from Ti4+ to Ti3+, reduce the polarization of electrode, decrease charge transfer impedance (Rct) and solid electrolyte interface impedance (Rsei), and increase the lithium ion diffusion coefficient (DLi), thereby enhancing the electrochemical performance of LTO. Therefore, the porous mooncake-shaped LTO modified using 2 wt % SmF3 displays a large specific discharge capacity of 143.8 mAh g−1 with an increment of 79.16 % compared to pure LTO at a high rate of 10 C (1 C=170 mAh g−1), and shows a high retention rate of 96.4 % after 500 cycles at 5 C-rate. 相似文献
18.
利用黄麻碳化后的纤维和吡咯单体作为还原剂,高锰酸钾作为氧化剂,通过原位氧化还原反应法合成了碳纤维/MnO/C一维复合物。扫描电子显微镜(SEM)结果显示,MnO/C纳米颗粒分布在碳纤维的外壁上,MnO被包裹在由聚吡咯碳化而来的碳中,MnO/C纳米颗粒大小为50~150 nm。将制备的产物作为锂离子电池负极材料进行充放电测试,结果表明当电流密度为100mA·g~(-1)时,循环50次后仍具有410 mAh·g~(-1)的比容量,同时也展现了良好的倍率性能。 相似文献