首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
UWB技术在无线传感器网络中的应用   总被引:1,自引:1,他引:1  
肖凌  祝忠明  赖敏 《信息通信》2007,20(2):77-80
通信技术的发展推动了无线传感器网络技术的发展,以低功耗为显著特点的UWB技术的出现,更是把现代通信技术推向新的发展高度.文章介绍了无线传感器网络的结构及特点,并结合UWB技术的特点,分析了UWB技术应用于无线传感器网络的优势,同时给出了应用的基本模型结构.  相似文献   

2.
Controlled sink mobility for prolonging wireless sensor networks lifetime   总被引:3,自引:0,他引:3  
This paper demonstrates the advantages of using controlled mobility in wireless sensor networks (WSNs) for increasing their lifetime, i.e., the period of time the network is able to provide its intended functionalities. More specifically, for WSNs that comprise a large number of statically placed sensor nodes transmitting data to a collection point (the sink), we show that by controlling the sink movements we can obtain remarkable lifetime improvements. In order to determine sink movements, we first define a Mixed Integer Linear Programming (MILP) analytical model whose solution determines those sink routes that maximize network lifetime. Our contribution expands further by defining the first heuristics for controlled sink movements that are fully distributed and localized. Our Greedy Maximum Residual Energy (GMRE) heuristic moves the sink from its current location to a new site as if drawn toward the area where nodes have the highest residual energy. We also introduce a simple distributed mobility scheme (Random Movement or RM) according to which the sink moves uncontrolled and randomly throughout the network. The different mobility schemes are compared through extensive ns2-based simulations in networks with different nodes deployment, data routing protocols, and constraints on the sink movements. In all considered scenarios, we observe that moving the sink always increases network lifetime. In particular, our experiments show that controlling the mobility of the sink leads to remarkable improvements, which are as high as sixfold compared to having the sink statically (and optimally) placed, and as high as twofold compared to uncontrolled mobility. Stefano Basagni holds a Ph.D. in electrical engineering from the University of Texas at Dallas (December 2001) and a Ph.D. in computer science from the University of Milano, Italy (May 1998). He received his B.Sc. degree in computer science from the University of Pisa, Italy, in 1991. Since Winter 2002 he is on faculty at the Department of Electrical and Computer Engineering at Northeastern University, in Boston, MA. From August 2000 to January 2002 he was professor of computer science at the Department of Computer Science of the Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas. Dr. Basagni’s current research interests concern research and implementation aspects of mobile networks and wireless communications systems, Bluetooth and sensor networking, definition and performance evaluation of network protocols and theoretical and practical aspects of distributed algorithms. Dr. Basagni has published over four dozens of referred technical papers and book chapters. He is also co-editor of two books. Dr. Basagni served as a guest editor of the special issue of the Journal on Special Topics in Mobile Networking and Applications (MONET) on Multipoint Communication in Wireless Mobile Networks, of the special issue on mobile ad hoc networks of the Wiley’s Interscience’s Wireless Communications & Mobile Networks journal, and of the Elsevier’s journal Algorithmica on algorithmic aspects of mobile computing and communications. Dr. Basagni serves as a member of the editorial board and of the technical program committee of ACM and IEEE journals and international conferences. He is a senior member of the ACM (including the ACM SIGMOBILE), senior member of the IEEE (Computer and Communication societies), and member of ASEE (American Society for Engineering Education). Alessio Carosi received the M.S. degree “summa cum laude” in Computer Science in 2004 from Rome University “La Sapienza.” He is currently a Ph.D. candidate in Computer Science at Rome University “La Sapienza.” His research interests include protocols for ad hoc and sensor networks, underwater systems and delay tolerant networking. Emanuel Melachrinoudis received the Ph.D. degree in industrial engineering and operations research from the University of Massachusetts, Amherst, MA. He is currently the Director of Industrial Engineering and Associate Chairman of the Department of Mechanical and Industrial Engineering at Northeastern University, Boston, MA. His research interests are in the areas of network optimization and multiple criteria optimization with applications to telecommunication networks, distribution networks, location and routing. He is a member of the Editorial Board of the International Journal of Operational Research. He has published in journals such as Management Science, Transportation Science, Networks, European Journal of Operational Research, Naval Research Logistics and IIE Transactions. Chiara Petrioli received the Laurea degree “summa cum laude” in computer science in 1993, and the Ph.D. degree in computer engineering in 1998, both from Rome University “La Sapienza,” Italy. She is currently Associate Professor with the Computer Science Department at Rome University “La Sapienza.” Her current work focuses on ad hoc and sensor networks, Delay Tolerant Networks, Personal Area Networks, Energy-conserving protocols, QoS in IP networks and Content Delivery Networks where she contributed around sixty papers published in prominent international journals and conferences. Prior to Rome University she was research associate at Politecnico di Milano and was working with the Italian Space agency (ASI) and Alenia Spazio. Dr. Petrioli was guest editor of the special issue on “Energy-conserving protocols in wireless Networks” of the ACM/Kluwer Journal on Special Topics in Mobile Networking and Applications (ACM MONET) and is associate editor of IEEE Transactions on Vehicular Technology, the ACM/Kluwer Wireless Networks journal, the Wiley InterScience Wireless Communications & Mobile Computing journal and the Elsevier Ad Hoc Networks journal. She has served in the organizing committee and technical program committee of several leading conferences in the area of networking and mobile computing including ACM Mobicom, ACM Mobihoc, IEEE ICC,IEEE Globecom. She is member of the steering committee of ACM Sensys and of the international conference on Mobile and Ubiquitous Systems: Networking and Services (Mobiquitous) and serves as member of the ACM SIGMOBILE executive committee. Dr. Petrioli was a Fulbright scholar. She is a senior member of IEEE and a member of ACM. Z. Maria Wang received her Bachelor degree in Electrical Engineering with the highest honor from Beijing Institute of Light Industry in China, her M.S. degree in Industrial Engineering/Operations Research from Dalhousie University, Canada and her Ph.D. in Industrial Engineering/Operations Research from Northeastern University, Boston. She served as a R&D Analyst for General Dynamics. Currently MS. Wang serves as an Optimization Analyst with Nomis Solutions, Inc.  相似文献   

3.
In wireless sensor networks, efficiently disseminating data from a dynamic source to multiple mobile sinks is important for the applications such as mobile target detection and tracking. The tree-based multicasting scheme can be used. However, because of the short communication range of each sensor node and the frequent movement of sources and sinks, a sink may fail to receive data due to broken paths, and the tree should be frequently reconfigured to reconnect sources and sinks. To address the problem, we propose a dynamic proxy tree-based framework in this paper. A big challenge in implementing the framework is how to efficiently reconfigure the proxy tree as sources and sinks change. We model the problem as on-line constructing a minimum Steiner tree in an Euclidean plane, and propose centralized schemes to solve it. Considering the strict energy constraints in wireless sensor networks, we further propose two distributed on-line schemes, the shortest path-based (SP) scheme and the spanning range-based (SR) scheme. Extensive simulations are conducted to evaluate the schemes. The results show that the distributed schemes have similar performance as the centralized ones, and among the distributed schemes, the SR scheme outperforms the SP scheme.  相似文献   

4.
Relay sensor placement in wireless sensor networks   总被引:4,自引:0,他引:4  
This paper addresses the following relay sensor placement problem: given the set of duty sensors in the plane and the upper bound of the transmission range, compute the minimum number of relay sensors such that the induced topology by all sensors is globally connected. This problem is motivated by practically considering the tradeoff among performance, lifetime, and cost when designing sensor networks. In our study, this problem is modelled by a NP-hard network optimization problem named Steiner Minimum Tree with Minimum number of Steiner Points and bounded edge length (SMT-MSP). In this paper, we propose two approximate algorithms, and conduct detailed performance analysis. The first algorithm has a performance ratio of 3 and the second has a performance ratio of 2.5. Xiuzhen Cheng is an Assistant Professor in the Department of Computer Science at the George Washington University. She received her MS and PhD degrees in Computer Science from the University of Minnesota - Twin Cities in 2000 and 2002, respectively. Her current research interests include Wireless and Mobile Computing, Sensor Networks, Wireless Security, Statistical Pattern Recognition, Approximation Algorithm Design and Analysis, and Computational Medicine. She is an editor for the International Journal on Ad Hoc and Ubiquitous Computing and the International Journal of Sensor Networks. Dr. Cheng is a member of IEEE and ACM. She received the National Science Foundation CAREER Award in 2004. Ding-Zhu Du received his M.S. degree in 1982 from Institute of Applied Mathematics, Chinese Academy of Sciences, and his Ph.D. degree in 1985 from the University of California at Santa Barbara. He worked at Mathematical Sciences Research Institutea, Berkeley in 1985-86, at MIT in 1986-87, and at Princeton University in 1990-91. He was an associate-professor/professor at Department of Computer Science and Engineering, University of Minnesota in 1991-2005, a professor at City University of Hong Kong in 1998-1999, a research professor at Institute of Applied Mathematics, Chinese Academy of Sciences in 1987-2002, and a Program Director at National Science Foundation of USA in 2002-2005. Currently, he is a professor at Department of Computer Science, University of Texas at Dallas and the Dean of Science at Xi’an Jiaotong University. His research interests include design and analysis of algorithms for combinatorial optimization problems in communication networks and bioinformatics. He has published more than 140 journal papers and 10 written books. He is the editor-in-chief of Journal of Combinatorial Optimization and book series on Network Theory and Applications. He is also in editorial boards of more than 15 journals. Lusheng Wang received his PhD degree from McMaster University in 1995. He is an associate professor at City University of Hong Kong. His research interests include networks, algorithms and Bioinformatics. He is a member of IEEE and IEEE Computer Society. Baogang Xu received his PhD degree from Shandong University in 1997. He is a professor at Nanjing Normal University. His research interests include graph theory and algorithms on graphs.  相似文献   

5.
This paper presents a distributed medium access control (MAC) protocol for low data rate ultra‐wideband (UWB) wireless sensor networks (WSNs), named LA‐MAC. Current MAC proposal is closely coupled to the IEEE 802.15.4a physical layer and it is based on its Impulse‐Radio (IR) paradigm. LA‐MAC protocol amplifies its admission control mechanism with location‐awareness, by exploiting the ranging capability of the UWB signals. The above property leads to accurate interference predictions and blocking assessments that each node in the network can perform locally, limiting at the same time the actions needed to be performed towards the admission phase. LA‐MAC is evaluated through extensive simulations, showing a significant improvement in many critical parameters, such as throughput, admission ratio, energy consumption, and delay, under different traffic load conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In wireless sensor networks (WSNs), broadcast authentication is a crucial security mechanism that allows a multitude of legitimate users to join in and disseminate messages into the networks in a dynamic and authenticated way. During the past few years, several public-key based multi-user broadcast authentication schemes have been proposed to achieve immediate authentication and to address the security vulnerability intrinsic to μTESLA-like schemes. Unfortunately, the relatively slow signature verification in signature-based broadcast authentication has also incurred a series of problems such as high energy consumption and long verification delay. In this contribution, we propose an efficient technique to accelerate the signature verification in WSNs through the cooperation among sensor nodes. By allowing some sensor nodes to release the intermediate computation results to their neighbors during the signature verification, a large number of sensor nodes can accelerate their signature verification process significantly. When applying our faster signature verification technique to the broadcast authentication in a 4 × 4 grid-based WSN, a quantitative performance analysis shows that our scheme needs 17.7-34.5% less energy and runs about 50% faster than the traditional signature verification method. The efficiency of the proposed technique has been tested through an experimental study on a network of MICAz motes.  相似文献   

7.
Wireless sensor networks (WSN) are formed by network-enabled sensors spatially randomly distributed over an area. Because the number of nodes in the WSNs is usually large, channel reuse must be applied, keeping co-channel nodes sufficiently separated geographically to achieve satisfactory SIR level. The most efficient channel reuse configuration for WSN has been determined and the worst-interference scenario has been identified. For this channel reuse pattern and worst-case scenario, the minimum co-channel separation distance consistent with an SIR level constraint is derived. Our results show that the two-hop co-channel separations often assumed for sensor and ad hoc networks are not sufficient to guarantee communications. Minimum co-channel separation curves given various parameters are also presented. The results in this paper provide theoretical basis for channel spatial reuse and medium access control for WSN s and also serve as a guideline for how channel assignment algorithms should allocate channels. Furthermore, because the derived co-channel separation is a function of the sensor transmission radius, it also provides a connection between network data transport capacity planning and network topology control which is administered by varying transmission powers. Xiaofei Wang is born on July 31st, 1974, in Jilin, People’s Republic of China. He received the M.S. degree in Electrical Engineering from Delft University of Technology, Delft, The Netherlands in 1992, and the Ph.D. degree in Electrical and Computer Engineering from Cornell University, Ithaca, New York in 2005. From 1997 to 1998, he was selected as one of the twenty best master graduate candidates in all fields to participate in the Japan Prizewinners Programme, an international leadership exchange program established by the Dutch Ministry of Culture, Science and Education. From 1998 to 1999, he worked as a researcher at the Department of Electrical Engineering and Applied Mathematics of Delft University of Technology in the areas of Secondary Surveillance Radar and Ground Penetrating Radar. His research interests include wireless sensor networks, wireless mesh networks, wireless networking, error control coding, communication theory and information theory. He is currently working at Qualcomm Incorporated in San Diego, CA. Toby Berger was born in New York, NY on September 4, 1940. He received the B.E. degree in electrical engineering from Yale University, New Haven, CT in 1962, and the M.S. and Ph.D. degrees in applied mathematics from Harvard University, Cambridge, MA in 1964 and 1966, respectively. From 1962 to 1968 he was a Senior Scientist at Raytheon Company, Wayland, MA. From 1968 through 2005 he he held the position of Irwin and Joan Jacobs Professor of Engineering at Cornell University, Ithaca, NY where in 2006 he became a professor in the ECE Deportment of the University of Virginia, Charlottesville, VA. Professor Berger’s research interests include information theory, random fields, communication networks, wireless communications, video compression, voice and signature compression and verification, neuroinformation theory, quantum information theory, and coherent signal processing. Berger has served as editor-in-chief of the IEEE Transactions on Information Theory and as president of the IEEE Information Theory Group. He has been a Fellow of the Guggenheim Foundation, the Japan Society for Promotion of Science, the Ministry of Education of the People’s Republic of China and the Fulbright Foundation. In 1982 he received the Frederick E. Terman Award of the American Society for Engineering Education, he received the 2002 Shannon Award from the IEEE Information Theory Society and has been designated the recipient of the IEEE 2006 Leon K. Kirchmayer Graduate Teaching Award. Berger is a Fellow and Life Member of the IEEE, a life member of Tau Beta Pi, and an avid blues harmonica player.  相似文献   

8.
The advent of Ultra Wide Band (UWB) technology offers a unique opportunity to consider a new type of peer-to-peer wireless Local Area Network (LAN) that requires neither access at a peak data rate commensurate with the full bandwidth of the medium nor a conventional medium access protocol. Rather, due to the extraordinarily high bandwidth afforded by UWB, which is typically much greater than the peak bandwidth required by any ad-hoc radio node, one might imagine a network for which pairs of nodes are interconnected by one or more dedicated (non-shared) radio channels created by time, frequency, or code division multiplexing. In this paper, we consider a network containing N ad-hoc nodes and 2N independent radio channels. Starting with (1) an N × N power matrix, where element p i,j represents the power needed for a successful transmission from node i to node j including the effects of path loss and shadow fading, and (2) a second N × N traffic matrix where element t i,j represents the exogenous traffic originating from node i and destined for node j, we seek to assign radio channels and multi-hop route the traffic between source-destination pairs such that the resulting connectivity pattern and traffic flow minimize the average transmit energy needed to deliver a packet between an arbitrarily chosen pair of nodes. With no medium access protocol needed, collisions cannot occur and retransmissions become unnecessary. Moreover, the available capacity grows with the number of channels created (or, alternatively, as some common set of channels are re-used on a non-interfering basis via sufficient spatial separation). In this fashion, such a UWB ad-hoc network takes on the characteristics of a multi-hop Wavelength-Division Multiplexed (WDM) network well known from the multihop lightwave network art, although the constraints and dynamics are certainly different. Since the optimum connectivity and flow problem is shown to be NP hard, several heuristics are considered and compared. These heuristics seek, first, to establish a “good” connectivity graph, and then to flow the traffic in an optimum fashion. Our results suggest that application of these techniques may provide a distinct wireless LAN advantage achievable only via UWB radio technology, and several opportunities for future work based on this novel approach to ad-hoc local area radio networks are identified and discussed. Marc Krull received his B.S. degree in electrical engineering from Brown University in 2001 and his M.S. degree in electrical engineering from the University of California, San Diego in 2004. His graduate research focused on the investigation of energy efficient routing protocols for ultrawideband networks. He is currently with Raytheon Companys Intelligence and Information Systems division in Aurora, Colorado, where he is involved in software development for satellite ground systems. Anthony Acampora is a Professor of Electrical and Computer Engineering at the University of California, San Diego, and is involved in numerous research projects addressing various issues at the leading edge of telecommunication networks, including the Internet, ATM, broadband wireless access, network management and dense wavelength division multiplexing. From 1995 through 1999, he was Director of UCSDs Center for Wireless Communications, responsible for an industrially funded research effort which included circuits, signal processing, smart antennas, basic communication theory, wireless telecommunications networks, infrastructure for wireless communications, and software for mobility. Prior to joining the faculty at UCSD in 1995, he was Professor of Electrical Engineering at Columbia University and Director of the Center for Telecommunications Research, a National Science Foundation Engineering Research Center. He joined the faculty at Columbia in 1988 following a 20-year career at AT&T Bell Laboratories, most of which was spent in basic research where his interests included radio and satellite communications, local and metropolitan area networks, packet switching, wireless access systems, and lightwave networks. His most recent position at Bell Labs was Director of the Transmission Technology Laboratory where he was responsible for a wide range of projects, including broadband networks, image communications, and digital signal processing. At Columbia, he was involved in research and education programs concerning broadband networks, wireless access networks, network management, optical networks and multimedia applications. He received his PhD. in Electrical Engineering from the Polytechnic Institute of Brooklyn and is Fellow of the IEEE and a former member of the IEEE Communication Society Board of Governors. Professor Acampora has published over 160 papers, holds 33 patents, and has authored a textbook entitled An Introduction to Broadband Networks: MANs, ATM, B-ISDN, Self Routing Switches, Optical Networks, and Network Control for Voice, Data, Image and HDTV Telecommunications. He sits on numerous telecommunications advisory committees and frequently serves as a consultant to government and industry.  相似文献   

9.
A precise localization for mobile target in wireless sensor networks is presented in this letter,where a geometrical relationship is explored to improve the location estimation for mobile target,instead of a simple centroid approach.The equations of location compensation algorithm for mobile target are derived based on linear trajectory prediction and sensor selective activation.The results based on extensive simulation experiments show that the compensation algorithm gets better performance in metrics of quality of tracking and energy efficiency with the change of sensor sensing range,the ratio of sensing range and sensor activation range,and the data sampling rate than traditional methods,which means our proposing can achieve better quality-energy tradeoff for mobile target in wireless sensor networks.  相似文献   

10.
This paper presents a novel link-layer encryption protocol for wireless sensor networks. The protocol design aims to reduce energy consumption by reducing security related communication overhead. This is done by merging security related data of consecutive packets. The merging (or combining packets) based on simple mathematical operations helps to reduce energy consumption by eliminating the requirement to send security related fields in headers and trailers. We name our protocol as the Compact Security Protocol referred to as C-Sec. In addition to energy savings, the C-Sec protocol also includes a unique security feature of hiding the packet header information. This feature makes it more difficult to trace the flow of wireless communication, and helps to minimize the cost of defending against replay attacks. We performed rigorous testing of the C-Sec protocol and compared it with well-known protocols including TinySec, MiniSec, SNEP and Zigbee. Our performance evaluation demonstrates that the C-Sec protocol outperforms other protocols in terms of energy savings. We also evaluated our protocol with respect to other performance metrics including queuing delay and error probability.  相似文献   

11.
Monte Carlo localization for mobile wireless sensor networks   总被引:5,自引:0,他引:5  
Aline  Koen   《Ad hoc Networks》2008,6(5):718-733
Localization is crucial to many applications in wireless sensor networks. In this article, we propose a range-free anchor-based localization algorithm for mobile wireless sensor networks that builds upon the Monte Carlo localization algorithm. We concentrate on improving the localization accuracy and efficiency by making better use of the information a sensor node gathers and by drawing the necessary location samples faster. To do so, we constrain the area from which samples are drawn by building a box that covers the region where anchors’ radio ranges overlap. This box is the region of the deployment area where the sensor node is localized. Simulation results show that localization accuracy is improved by a minimum of 4% and by a maximum of 73% (average 30%), for varying node speeds when considering nodes with knowledge of at least three anchors. The coverage is also strongly affected by speed and its improvement ranges from 3% to 55% (average 22%). Finally, the processing time is reduced by 93% for a similar localization accuracy.  相似文献   

12.
Indoor localization systems are becoming very popular because they enable the creation of very interesting location-based applications. This paper provides a short introduction about localization systems based on a sensor network and the actual state of the art. Important topics related to indoor localization like the necessary infrastructure, available technologies and their expected accuracy are treated. Additionally, the results of previous work referred to the performance evaluation of localization algorithms are shortly described. Finally, some ideas related to further investigations are presented.  相似文献   

13.
The challenging problem of time synchronization in wireless sensor networks is considered in this paper, where a new distributed protocol is proposed for both local and multi-hop synchronization. The receiver-to-receiver paradigm is used, which has the advantage of reducing the time-critical-path and thus improving the accuracy compared to common sender-to-receiver protocols. The protocol is fully distributed and does not rely on any fixed reference. The role of the reference is divided amongst all nodes, while timestamp exchange is integrated with synchronization signals (beacons). This enables fast acquisition of timestamps that are used as samples to estimate relative synchronization parameters. An appropriate model is used to derive maximum likelihood estimators (MLE) and the Cramer-Rao lower bounds (CRLB) for both the offset-only, and the joint offset/skew estimation. The model permits to directly estimating relative parameters without using or referring to a reference’ clock. The proposed protocol is extended to multi-hop environment, where local synchronization is performed proactively and the resulted estimates are transferred to the intermediate/end-point nodes on-demand, i.e. as soon as a multi-hop communication that needs synchronization is initiated. On-demand synchronization is targeted for multi-hop synchronization instead of the always-on global synchronization model, which avoids periodic and continuous propagation of synchronization signals beyond a single-hop. Extension of local MLE estimators is proposed to derive relative multi-hop estimators. The protocol is compared by simulation to some state-of-the-art protocols, and results show much faster convergence of the proposed protocol. The difference has been on the order of more than twice compared to CS-MNS, more than ten times compared to RBS, and more than twenty times compared to TPSN. Results also show scalability of the proposed protocol concerning the multi-hop synchronization. The error does not exceed few microseconds for as much as 10 hops in R4Syn, while in CS-MNS, and TPSN, it reaches few tens of microseconds. Implementation and tests of the protocol on real sensor motes confirm microsecond level precision even in multi-hop scenarios, and high stability (long lifetime) of the skew/offset model.  相似文献   

14.
The multi-input multi-output (MIMO) communication framework is adopted for wireless sensor networks by having multiple sensors equipped with single-element antennas cooperate in transmission. A power method-based iterative algorithm is developed that computes the optimal transmit and receive eigen-filters distributively among the sensors while transferring most of the computational burden to the central collector node. Since the proposed algorithm implicitly exploits the channel state information (CSI) both at the receiver and the transmitter, it is expected that the resulting spectral efficiency is higher than what can be achieved by receive CSI-only space-time coding. This intuition is confirmed by employing a variable-rate adaptive modulation scheme for the eigen-transmission and comparing its spectral efficiency with that of orthogonal space time block codes (OSTBCs) at specific target bit error rates. The performance is also evaluated using realistic channel estimation as well as the least mean square (LMS) and recursive least square (RLS) algorithms for iterative eigencoding. This material is based upon work supported by the Air Force Office of Scientific Research under Award No. FA9550-04-C-0074 and Toyon Research Corporation Subcontract No. SC6431-1. Seung-Jun Kim received B.S. and M.S. from Seoul National University in 1996 and 1998, respectively, and Ph.D. from University of California, Santa Barbara in 2005, all in electrical engineering. From 1998 to 2000, he served as a Korea Overseas Volunteer at Chiang Rai Teachers College in Chiang Rai, Thailand. Since 2005, he has been with NEC Laboratories America in Princeton, NJ. His research interests lie in detection/estimation theory, spread-spectrum communications, multiple antenna techniques and cross-layer design. Richard E. Cagley received the B.S. degree in engineering from Harvey Mudd College, Claremont, CA in 1997 and the M.S. and Ph.D. degrees in electrical engineering from the University of California, Santa Barbara in 1999 and 2003 respectively. Dr. Cagley currently holds a position with Toyon Research Corporation, Goleta, CA. Prior to joining Toyon, he held positions with Fujant Incorporated, Jet Propulsion Laboratories, and Qualcomm Corporation. His general research interests are in the areas of physical and MAC layer design for wireless communication. This includes multiuser detection, interference cancellation, space-time processing, spectrum management, and digital receiver design. Ronald A. Iltis received the B.A. (Biophysics) from The Johns Hopkins University in 1978, the M.Sc in Engineering from Brown University in 1980, and the Ph.D. in Electrical Engineering from the University of California, San Diego in 1984. Since 1984, he has been with the University of California, Santa Barbara, where he is currently a Professor in the Department of Electrical and Computer Engineering. His current research interests are in CDMA, software radio, radiolocation, and nonlinear estimation. He has also served as a consultant to government and private industry in the areas of adaptive arrays, neural networks and spread-spectrum communications. Dr. Iltis was previously an Editor for the IEEE Transactions on Communications. In 1990 he received the Fred W. Ellersick award for best paper at the IEEE MILCOM conference.  相似文献   

15.
Energy balanced data propagation in wireless sensor networks   总被引:1,自引:0,他引:1  
We study the problem of energy-balanced data propagation in wireless sensor networks. The energy balance property guarantees that the average per sensor energy dissipation is the same for all sensors in the network, during the entire execution of the data propagation protocol. This property is important since it prolongs the network’:s lifetime by avoiding early energy depletion of sensors. We propose a new algorithm that in each step decides whether to propagate data one-hop towards the final destination (the sink), or to send data directly to the sink. This randomized choice balances the (cheap) one-hop transimssions with the direct transimissions to the sink, which are more expensive but “bypass” the sensors lying close to the sink. Note that, in most protocols, these close to the sink sensors tend to be overused and die out early. By a detailed analysis we precisely estimate the probabilities for each propagation choice in order to guarantee energy balance. The needed estimation can easily be performed by current sensors using simple to obtain information. Under some assumptions, we also derive a closed form for these probabilities. The fact (shown by our analysis) that direct (expensive) transmissions to the sink are needed only rarely, shows that our protocol, besides energy-balanced, is also energy efficient. This work has been partially supported by the IST/FET/GC Programme of the European Union under contract numbers IST-2001-33135 (CRESCCO) and 6FP 001907 (DELIS). A perliminary version of the work appeared in WMAN 2004 [11]. Charilaos Efthymiou graduated form the Computer Engineering and Informatics Department (CEID) of the University of Patras, Greece. He received his MSc from the same department with advisor in S. Nikoletseas. He currently continuous his Ph.D studies in CEID with advisor L. Kirousis. His research interest include Probabilistic Techniques and Random Graphs, Randomized Algorithms in Computationally Hard Problems, Stochastic Processes and its Applications to Computer Science. Dr. Sotiris Nikoletseas is currently a Senior Researcher and Managing Director of Research Unit 1 (“Foundations of Computer Science, Relevant Technologies and Applications”) at the Computer Technology Institute (CTI), Patras, Greece and also a Lecturer at the Computer Engineering and Informatics Department of Patras University, Greece. His research interests include Probabilistic Techniques and Random Graphs, Average Case Analysis of Graph Algorithms and Randomized Algorithms, Fundamental Issues in Parallel and Distributed Computing, Approximate Solutions to Computationally Hard Problems. He has published scientific articles in major international conferences and journals and has co-authored (with Paul Spirakis) a book on Probabilistic Techniques. He has been invited speaker in important international scientific events and Universities. He has been a referee for the Theoretical Computer Science (TCS) Journal and important international conferences (ESA, ICALP). He has participated in many EU funded R&D projects (ESPRIT/ALCOM-IT, ESPRIT/GEPPCOM). He currently participates in 6 Fifth Framework projects: ALCOM-FT, ASPIS, UNIVERSAL, EICSTES (IST), ARACNE, AMORE (IMPROVING). Jose Rolim is Full Professor at the Department of Computer Science of the University of Geneva where he leads the Theoretical Computer Science and Sensor Lab (TCSensor Lab). He received his Ph.D. degree in Computer Science at the University of California, Los Angeles working together with Prof. S. Greibach. He has published several articles on the areas of distributed systems, randomization and computational complexity and leads two major projects on the area of Power Aware Computing and Games and Complexity, financed by the Swiss National Science Foundation. Prof. Rolim participates in the editorial board of several journals and conferences and he is the Steering Committee Chair and General Chair of the IEEE Distributed Computing Conference in Sensor Systems.  相似文献   

16.
《Microelectronics Journal》2014,45(12):1627-1633
In a short period of time Wireless Sensor Networks (WSN) captured the imagination of many researchers with the number of applications growing rapidly. The applications span large domains including mobile digital health, structural and environmental monitoring, smart home, energy efficient buildings, agriculture, smart cities, etc. WSN are also an important contributor to the fast emerging Internet of Things infrastructure. Some of the design specifications for WSN include reliability, accuracy, cost, deployment versatility, power consumption, etc. Power consumption is (most often) the dominant constraint in designing such systems. This constraint has multi-dimensional implications such as battery type and size, energy harvester design, lifetime of the deployment, intelligent sensing capability, etc. Power optimization techniques have to explore a large design search space. Energy neutral system implementation is the ultimate goal in wireless sensor networks ensuring a perpetual/greener use and represents a hot topic of research. Several recent advances promise significant reduction of the overall sensor network power consumption. These advances include novel sensors and sensor interfaces, low energy wireless transceivers, low power processing, efficient energy harvesters, etc. This paper reviews a number of system level power management methodologies for Wireless Sensor Networks. Especially, the paper is focusing on the promising technology of nano-Watt wake-up radio receiver and its combination with mature power management techniques to achieve better performance. Some of the presented techniques are then applied in the context of low cost and battery powered toy robots.  相似文献   

17.
Kui  Dennis  Bo  Yang   《Ad hoc Networks》2007,5(1):100-111
In-network data aggregation is an essential operation to reduce energy consumption in large-scale wireless sensor networks. With data aggregation, however, raw data items are invisible to the base station and thus the authenticity of the aggregated data is hard to guarantee. A compromised sensor node may forge an aggregation value and mislead the base station into trusting a false reading. Due to the stringent constraints of energy supply and computing capability on sensor nodes, it is challenging to detect a compromised sensor node and keep it from cheating, since expensive cryptographic operations are unsuitable for tiny sensor devices. This paper proposes a secure aggregation tree (SAT) to detect and prevent cheating. Our method is essentially different from other existing solutions in that it does not require any cryptographic operations when all sensor nodes work honestly. The detection of cheating is based on the topological constraints in the aggregation tree. We also propose a weighted voting scheme to determine a misbehaving node and a secure local recovery scheme to avoid using the misbehaving node.  相似文献   

18.
Connected coverage, which reflects how well a target field is monitored under the base station, is the most important performance metric used to measure the quality of surveillance that wireless sensor networks (WSNs) can provide. To facilitate the measurement of this metric, we propose two novel algorithms for individual sensor nodes to identify whether they are on the coverage boundary, i.e., the boundary of a coverage hole or network partition. Our algorithms are based on two novel computational geometric techniques called localized Voronoi and neighbor embracing polygons. Compared to previous work, our algorithms can be applied to WSNs of arbitrary topologies. The algorithms are fully distributed in the sense that only the minimal position information of one-hop neighbors and a limited number of simple local computations are needed, and thus are of high scalability and energy efficiency. We show the correctness and efficiency of our algorithms by theoretical proofs and extensive simulations. Chi Zhang received the B.E. and M.E. degrees in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in July 1999 and January 2002, respectively. Since September 2004, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yanchao Zhang received the B.E. degree in computer communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, the M.E. degree in computer applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002, and the Ph.D. degree in electrical and computer engineering from the University of Florida, Gainesville, in August 2006. Since September 2006, he has been an Assistant Professor in the Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark. His research interest include wireless and Internet security, wireless networking, and mobile computing. He is a member of the IEEE and ACM. Yuguang Fang received the BS and MS degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D. degree in Systems and Control Engineering from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D. degree in Electrical Engineering from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997. From 1987 to 1988, he held research and teaching position in both Department of Mathematics and the Institute of Automation at Qufu Normal University. From September 1989 to December 1993, he was a teaching/research assistant in Department of Systems, Control and Industrial Engineering at Case Western Reserve University, where he held a research associate position from January 1994 to May 1994. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From September 1995 to May 1997, he was a research assistant in Department of Electrical and Computer Engineering at Boston University. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he got early promotion to Associate Professor with tenure in August 2003, and to Full Professor in August 2005. His research interests span many areas including wireless networks, mobile computing, mobile communications, wireless security, automatic control, and neural networks. He has published over one hundred and fifty (150) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He also received the 2001 CAST Academic Award. He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in America and Who’s Who in World. Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for IEEE Transactions on Mobile Computing, an Editor for ACM Wireless Networks, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications:Wireless Communications Series, an Area Editor for ACM Mobile Computing and Communications Review, an Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and Feature Editor for Scanning the Literature in IEEE Personal Communications. He has also actively involved with many professional conferences such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award), MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Technical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 Technical Program Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair), Globecom’02, and International Conference on Computer Communications and Networking (IC3N) (Technical Program Vice-Chair).  相似文献   

19.
Gang  Bhaskar   《Ad hoc Networks》2007,5(6):832-843
Wireless sensor networks are expected to be used in a wide range of applications from environment monitoring to event detection. The key challenge is to provide energy efficient communication; however, latency remains an important concern for many applications that require fast response. In this paper, we address the important problem of minimizing average communication latency for the active flows while providing energy-efficiency in wireless sensor networks. As the flows in some wireless sensor network can be long-lived and predictable, it is possible to design schedules for sensor nodes so that nodes can wake up only when it is necessary and asleep during other times. Clearly, the routing layer decision is closely coupled to the wakeup/sleep schedule of the sensor nodes. We formulate a joint scheduling and routing problem with the objective of finding the schedules and routes for current active flows with minimum average latency. By constructing a novel delay graph, the problem can be solved optimally by employing the M node-disjoint paths algorithm under FDMA channel model. We further present extensions of the algorithm to handle dynamic traffic changes and topology changes in wireless sensor networks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号