首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1H and 2H NMR methods were used to investigate the effect of fillers on the molecular motions in filled poly(dimethylsiloxane). Molecular mobility at the polymer filler interface is strongly different from that outside the adsorption layer. The influence of concentration and type of filler on molecular motions and concentration of the adsorption layer was determined.  相似文献   

3.
Thermal oxidation of poly(1-trimethylsilylprop-1-yne) was studied by IR spectroscopy in the 20—245 °C temperature interval. In the 20—160 °C temperature range, the reaction proceeds predominantly at the C—Me group as revealed by the decrease in the intensity of the bands of the methyl group bound to the C atom and the appearance of the bands of the hydroperoxide and methylene groups. The decomposition of hydroperoxides produces aldehydes and ethers. At 160—200 °C, oxidation occurs via two routes: at the C—Me and C=C groups, while the Me3Si group remains unchanged. At 230—240 °C, the rate of the reaction occurring at the C=C bond is higher than the rates of the processes involving the MeC and Me3Si groups. The relative content of the structural units was calculated for the samples oxidized at different temperatures. Plausible mechanisms of thermal oxidation of poly(1-trimethylsilylprop-1-yne) were considered on the basis of the data obtained.  相似文献   

4.
This paper reports our investigation regarding the thermal properties of new polymer-silica hybrid materials obtained by radiation grafting. The polymer poly(dimethylsiloxane),bis(3-aminopropyl)terminated is γ-grafted on a silica gel surface. The thermal behaviour of γ-grafted hybrid materials reveals remarkable differences compared to the thermal behaviour of physically adsorbed polymers. These differences allow us to assess the ability of γ-rays to produce a polymer chemically bonded on a silica surface. The chemical bonds formed by irradiation give to the polymer a high conformational stability confirmed by DTA analysis.  相似文献   

5.
The dynamic properties of the micelles of a novel synthesized amphiphilic block copolymer, dendritic poly(benzyl ether)–poly(acrylic acid) (Dendr.PBE-PAA), formed in aqueous solutions were studied by the 1H self-diffusion coefficient, relaxation measurements and 2D nuclear Overhauser enhancement spectroscopy. The experimental results show that Dendr.PBE-PAA molecules self-aggregate in aqueous solution. The dynamic properties of the Dendr.PBE-PAA micelles vary with their total concentration in the solution. The motion of the molecules in the micelles of a concentrated solution is more restricted than that in a less concentrated one. The main chains of PAA are densely packed in the surface layer of the hydrophobic core with the carboxyl side chain pointing to the aqueous medium and the hydrophobic phenoxy rings stay in the interior. The self-aggregate becomes larger as the degree of polymerization of PAA increases. However the phenoxy rings situated in the interior of the hydrophobic core become more loosely packed. n-Hexadecane is solubilized in the micelles. The optimal position of n-hexadecane is between the phenoxy rings next to the PAA chains. Received: 25 January 2001 Accepted: 18 July 2001  相似文献   

6.
Thermal, chemical and rheological properties of ultraviolet aged asphalt binder were characterized by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) and dynamic shear rheometer (DSR), respectively. Asphalt binder samples were made with different film thickness (50, 100, 200 and 500 μm) and suffered different ageing time (0, 48, 96 and 144 h), at a certain UV radiant intensity of 20 w m–2 in a self-made accelerated ageing oven. The results indicate that the UV light ageing would lead to the improvement of thermal behavior and the growth of the glass transition temperature of asphalt binder. This type of ageing can be also reflected from the FTIR spectra in terms of the characteristic peaks of the carbonyl groups and sulphoxides. The UV light ageing can change some rheological parameters of asphalt binder, such as complex modulus and phase angle. The ageing degrees of asphalt binder by this type of ageing test are mainly related to the ageing time and film thickness of the sample.  相似文献   

7.
Thermal degradation of poly(methyl-n-hexylsilane) in the solid state in absence of oxygen reveals formation of a cyclic pentamer between 150 and 250°C. Polymer is gradually degraded to an intermediate molecular weight distribution. The weight average of this new distribution is not only temperature-dependent, but is also a function of viscosity of the polymer and nature of chain ends. As no insolubles or Si? H groups are formed, the degradation mechanism is most likely a back-biting mechanism induced by active chain ends such as silyl anions or Si? Cl rather than a homolytic cleavage of the main chain. A concurrent intramolecular rearrangement reaction is also proposed. Moreover, this study proposes an explanation to the trimodal molecular weight distribution obtained by the Wurtz coupling of dichlorosilanes with molten sodium in refluxing toluene. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The thermal degradation behaviour, in the absence of oxygen, of poly(p-methylstyrene) has been investigated. Monomer is the main product formed in the degradation process, together with different oligomers which have been identified and whose amounts have been determined. A reaction mechanism accounting for the formation of the degradation products, and similar to the mechanism established for polystyrene, is proposed. The main differences of the process comparing with polystyrene are the higher amount of monomer which is produced and the crosslinking structures which are formed at T < 400° C.  相似文献   

9.
Thermal decomposition of poly(bismaleimides) has been investigated by using programmed and isothermal thermogravimetric analysis (TGA) in nitrogen. Reaction rates and overall activation energies were calculated from isothermal weight less studies. For five aliphatic poly(bismaleimides) a linear correlation between the activation energies and the number of methylene groups in the sequence between the maleimide residues was found. Aliphatic poly(bismaleimides) follow first-order kinetic law up to a conversion of 60-70% having activation energies between 196 and 256 kj/mole. poly(2,4-bismaleimidotoluene) which was found to have in highest polymer decomposition temperature (PDT) did follow the first-order kinetics up to a conversion of 60% in contrast to other aromatic poly(bismaleimides). In addition to the TGA, the pyro-field ion mass spectra of the polymers were recorded and are discussed.  相似文献   

10.
11.
A variety of techniques were used to follow the thermal degradation of a poly(parabanic acid) (PPA-M). The kinetic data associated with the weight loss as a function of time at elevated temperatures indicates a random initiation process followed by depolymerization. Infrared and mass spectral techniques further confirmed the kinetic data by showing the presence of isocyanate and amide groups in addition to CO, CO2, and nitric oxide gases being evolved. Incipient gelation occurs simultaneously with the formation of the amide. A reverse Hoffman rearrangement mechanism has been proposed which appears to be consistent with the available experimental data.  相似文献   

12.
This paper presents an initial attempt at describing poly(vinyl chloride) (PVC) thermal degradation through a semi-detailed and lumped kinetic model. A mechanism of 40 species and pseudocomponents (molecules and radicals) involved in about 250 reactions permits quite a good reproduction of the main characteristics of PVC degradation and volatilization. The presence of the two step mechanism—the first step of which corresponds to dehydrochlorination and the second to the tar release and residue char formation—are correctly predicted both in quantitative terms and in the temperature ranges. The model was validated by comparison with several thermo gravimetric analyses, both dynamic at different heating rates, and isothermal. When compared with the typical one step global apparent degradation models, the approach proposed here spans quite large operative ranges, especially when it comes to predicting product distributions. The initial results of these product predictions, even though quite preliminary, are encouraging and confirm the validity of the model.  相似文献   

13.
The assisted thermal degradation of poly(diethyleneglycol-bis-allyl carbonate), poly-CR 39, has been investigated at 300°C, under nitrogen or argon, in the presence of the metals, Fe, Cu and Zn. The major decomposition products are carbon dioxide, ethene, propene, 1,4-dioxane, 2-propen-1-ol, 2,2′-oxydiethanol carbonate, 2,2′-oxydiethanol and 1,2-di(2′-hydroxy)ethoxy ethane. A degradation mechanism is proposed.  相似文献   

14.
The thermal degradation of selected poly(alkyl methacrylates) at temperatures between 300 and 800 °C was investigated by pyrolysis gas chromatography. Quantitative characterization of the pyrolysis products yields insights into the mechanism for thermal degradation of poly(alkyl methacrylates) under these conditions. Unsaturated monomeric alkyl methacrylates, carbon dioxide, carbon monoxide, methane, ethane, methanol, ethanol, and propanol were formed during thermal degradation of poly(alkyl methacrylates).  相似文献   

15.
The thermal behaviour of poly(o-methacryloyloxybenzoic acid) has been studied by means of dynamic and isothermal thermogravimetric analysis in the range 100–600°C, and infra-red spectroscopy. The results suggest that the initial step in the degradation of the polymer in the range 140–220°C involves the release of salicylic acid from isotactic sequences and the formation of sixmembered cyclic structures of the glutaric anhydride type. This process results in the formation of a random copolymer of o-methacryloyloxybenzoic acid and 2-methylene-2,4-dimethylglutaric anhydride. Subsequent heating in the range 220–330°C results in loss of the remaining salicylic groups to form the pure polyanhydride compound. Degradation of the main chain occurs at temperatures above 330°C.  相似文献   

16.
Thermal degradation kinetics of poly(methylvinylsilylene-co-styrene) copolymers, viz., PMVSS-I to PMVSS-V obtained by reacting methylvinyldichlorosilane (MVDCS) and styrene in 1:0.25, 1:0.5, 1:1, 1:3 and 1:7 mole ratios under dechlorination conditions, using sodium, was studied by thermogravimetry. The homopolymer, poly(methylvinylsilane) (PMVS), synthesized from MVDCS using sodium was also subjected to the above study for comparative evaluation. The kinetic parameters for thermal degradation, viz., activation energy (E) and pre-exponential factor (A) for the above polymers were estimated by non-isothermal kinetic methods such as Mac Callum-Tanner (M-T), Horowitz-Metzger (H-M), Madhusudhanan-Krishnan-Ninan (MKN) and Coats-Redfern (C-R). The order for thermal degradation of PMVS was found to be almost 0. In the case of the copolymers, the order was 1 for PMVSS-I and 2 for PMVSS-II to PMVSS-V. The observed difference in the order for thermal degradation of PMVSS-I when compared to the other copolymers is attributed to the presence of polysilyl linkages in PMVSS-I. It was found that the activation energy and pre-exponential factor showed an increase in trend with increase in concentration of styrene in the copolymer system.  相似文献   

17.
The aim of this study was to investigate the characteristics and mechanism of the degradation of poly(siloxane-urethane) (PSiU) copolymers by thermogravimetric analysis (TGA) and TGA coupled with Fourier-transform infra-red spectroscopy (TG-FTIR). The PSiU copolymers consisted of 4,4′-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD), and OH-terminated polydimethylsiloxane (PDMS). In TGA they exhibited a two-stage degradation at 250-650 °C. The two stages of degradation have been found to comprise eight degradation steps and two interchange reactions, as revealed by TG-FTIR analysis. The main decomposition products have been identified as CO2, tetrahydrofuran, cyclosiloxane, and macrocyclic species. In addition, the effects of hard segment content (HSC) on the degradation and thermal stability of PSiU copolymers have been investigated by means of TG and DTG curves; notably, a stability region at 410-470 °C is caused by the cyclosiloxane, as verified by TG-FTIR.  相似文献   

18.
The thermal stability and the temperature at which maximum degradation yields are detected were quite similar for both poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP). However, considerable differences among the thermal degradation products of both polymers were detected indicating a correlation between the polymer structure and the degradation mechanism. Direct pyrolysis mass spectrometry analyses revealed that P2VP degrades via a complex degradation mechanism, yielding mainly pyridine, monomer, and protonated oligomers, whereas depolymerization of P4VP takes place in accordance with the general thermal behaviour of vinyl polymers. The complex thermal degradation behaviour for P2VP is associated with the position of the nitrogen atom in the pyridine ring, with σ-effect.  相似文献   

19.
This study demonstrates how luminescent semiconductor nanocrystals (quantum dots or QDs) can be dispersed uniformly in a poly(dimethylsiloxane) (PDMS) matrix by polymerizing a mixture of the prepolymer oligomers and the nanocrystals with a relatively large concentration of crosslinking molecules. A microfluidic device is used to fabricate PDMS microbeads embedded with the QDs by using flow focusing to first form monodisperse droplets of the prepolymer/crosslinker/nanocrystal mixture in a continuous aqueous phase. The droplets are subsequently collected, and heated to polymerize them into solid microbead composites. The degree of aggregation of the nanocrystals in the matrix is studied by measuring the nonradiative resonance energy transfer (RET) between the nanocrystals. For this purpose, two quantum dots are used with maxima in their luminescence emission spectrum at 560 nm and 620 nm. When the nanocrystals are within the F?rster radius (approximately 10 nm) of each other, exciton energy cascades from the QDs which emit at the shorter wavelength to the QDs which emit at the longer wavelength. This energy transfer is quantified, for two concentration ratios of the prepolmer to the crosslinker, by measuring the deviation of the microbead luminescence spectrum from a reference spectrum obtained by dispersing the QD mixture in a solvent (toluene) in which the nanocrystals do not aggregate. For a low concentration of crosslinking molecules relative to the prepolymer (5:1 by weight prepolymer to crosslinker), strong RET is observed as the emission of the 620 nm QDs is increased and the 560 nm QDs is decreased relative to the reference. In the emission spectrum for a higher concentration of crosslinkers (2:1 by weight prepolymer to crosslinker), the resonance energy transfer is less relative to the case of the low concentration of crosslinkers, and the spectrum more closely resembles the reference. This result indicates that the increase in the crosslinker concentration has reduced the nanocrystal aggregation in the cured polymer. The use of crosslinking can serve as a general paradigm for forming, from a prepolymer/nanoparticle mixture, a composite in which the particles are not aggregated. Under the usual conditions the entropic cost to a linearly growing polymer chain of surrounding nanoparticles forces them to aggregate; crosslinking kinetically entraps the particles and circumvents this aggregation driving force. The QD/polymer composite microbeads fabricated in this study find applications in bead-based platforms for high-throughput, multiplexed screening, where the emission spectrum of the QD luminescence can be used as a spectral barcode to label the beads. For microbeads in which the nanocrystals are uniformly dispersed, this barcode is undistorted by energy transfer, and is easily read.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号