首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.

Background  

The cortical activity underlying the perception of vowel identity has typically been addressed by manipulating the first and second formant frequency (F1 & F2) of the speech stimuli. These two values, originating from articulation, are already sufficient for the phonetic characterization of vowel category. In the present study, we investigated how the spectral cues caused by articulation are reflected in cortical speech processing when combined with phonation, the other major part of speech production manifested as the fundamental frequency (F0) and its harmonic integer multiples. To study the combined effects of articulation and phonation we presented vowels with either high (/a/) or low (/u/) formant frequencies which were driven by three different types of excitation: a natural periodic pulseform reflecting the vibration of the vocal folds, an aperiodic noise excitation, or a tonal waveform. The auditory N1m response was recorded with whole-head magnetoencephalography (MEG) from ten human subjects in order to resolve whether brain events reflecting articulation and phonation are specific to the left or right hemisphere of the human brain.  相似文献   

2.
This study reassessed the role of the nasal murmur and formant transitions as perceptual cues for place of articulation in nasal consonants across a number of vowel environments. Five types of computer-edited stimuli were generated from natural utterances consisting of [m n] followed by [i e a o u]: (1) full murmurs; (2) transitions plus vowel segments; (3) the last six pulses of the murmur; (4) the six pulses starting from the beginning of the formant transitions; and (5) the six pulses surrounding the nasal release (three pulses before and three pulses after). Results showed that the murmur provided as much information for the perception of place of articulation as did the transitions. Moreover, the highest performance scores for place of articulation were obtained in the six-pulse condition containing both murmur and transition information. The data support the view that it is the combination of nasal murmur plus formant transitions which forms an integrated property for the perception of place of articulation.  相似文献   

3.
According to recent theoretical accounts of place of articulation perception, global, invariant properties of the stop CV syllable onset spectrum serve as primary, innate cues to place of articulation, whereas contextually variable formant transitions constitute secondary, learned cues. By this view, one might expect that young infants would find the discrimination of place of articulation contrasts signaled by formant transition differences more difficult than those cued by gross spectral differences. Using an operant head-turning paradigm, we found that 6-month-old infants were able to discriminate two-formant stimuli contrasting in place of articulation as well as they did five-formant + burst stimuli. Apparently, neither the global properties of the onset spectrum nor simply the additional acoustic information contained in the five-formant + burst stimuli afford the infant any advantage in the discrimination task. Rather, formant transition information provides a sufficient basis for discriminating place of articulation differences.  相似文献   

4.
This study investigated the role of the amplitude envelope in the vicinity of consonantal release in the perception of the stop-glide contrast. Three sets of acoustic [b-w] continua, each in the vowel environments [a] and [i], were synthesized using parameters derived from natural speech. In the first set, amplitude, formant frequency, and duration characteristics were interpolated between exemplar stop and glide endpoints. In the second set, formant frequency and duration characteristics were interpolated, but all stimuli were given a stop amplitude envelope. The third set was like the second, except that all stimuli were given a glide amplitude envelope. Subjects were given both forced-choice and free-identification tasks. The results of the forced-choice task indicated that amplitude cues were able to override transition slope, duration, and formant frequency cues in the perception of the stop-glide contrast. However, results from the free-identification task showed that, although presence of a stop amplitude envelope turned all stimuli otherwise labeled as glides to stops, the presence of a glide amplitude envelope changed stimuli labeled otherwise as stops to fricatives rather than to glides. These results support the view that the amplitude envelope in the vicinity of the consonantal release is a critical acoustic property for the continuant / noncontinuant contrast. The results are discussed in relation to a theory of acoustic invariance.  相似文献   

5.
6.
Speech coding in the auditory nerve: V. Vowels in background noise   总被引:1,自引:0,他引:1  
Responses of auditory-nerve fibers to steady-state, two-formant vowels in low-pass background noise (S/N = 10 dB) were obtained in anesthetized cats. For fibers over a wide range of characteristic frequencies (CFs), the peaks in discharge rate at the onset of the vowel stimuli were nearly eliminated in the presence of noise. In contrast, strong effects of noise on fine time patterns of discharge were limited to CF regions that are far from the formant frequencies. One effect is a reduction in the amplitude of the response component at the fundamental frequency in the high-CF regions and for CFs between F1 and F2 when the formants are widely separated. A reduction in the amplitude of the response components at the formant frequencies, with concomitant increase in components near CF or low-frequency components occurs in CF regions where the signal-to-noise ratio is particularly low. The processing schemes that were effective for estimating the formant frequencies and fundamental frequency of vowels in quiet generally remain adequate in moderate-level background noise. Overall, the discharge patterns contain many cues for distinctions among the vowel stimuli, so that the central processor should be able to identify the different vowels, consistent with psychophysical performance at moderate signal-to-noise ratios.  相似文献   

7.
These studies investigated formant frequency discrimination by Japanese macaques (Macaca fuscata) using an AX discrimination procedure and techniques of operant conditioning. Nonhuman subjects were significantly more sensitive to increments in the center frequency of either the first (F1) or second (F2) formant of single-formant complexes than to corresponding pure-tone frequency shifts. Furthermore, difference limens (DLs) for multiformant signals were not significantly different than those for single-formant stimuli. These results suggest that Japanese monkeys process formant and pure-tone frequency increments differentially and that the same mechanisms mediate formant frequency discrimination in single-formant and vowel-like complexes. The importance of two of the cues available to mediate formant frequency discrimination, changes in the phase and the amplitude spectra of the signals, was investigated by independently manipulating these two parameters. Results of the studies indicated that phase cues were not a significant feature of formant frequency discrimination by Japanese macaques. Rather, subjects attended to relative level changes in harmonics within a narrow frequency range near F1 and F2 to detect formant frequency increments. These findings are compared to human formant discrimination data and suggest that both species rely on detecting alterations in spectral shape to discriminate formant frequency shifts. Implications of the results for animal models of speech perception are discussed.  相似文献   

8.
The current study explores the role of the amplitude of the fricative noise in the perception of place of articulation in voiceless fricative consonants. The amplitude of the fricative noise in naturally produced fricative-vowel utterances was varied relative to the vowel and potential changes in perceptual responses were investigated. The amplitude of the fricative noise for [s] and [s] was reduced such that the amplitude of the noise relative to the vowel was similar to [f] and [O], and, conversely, the amplitude of the fricative noise of [f] and [O] was increased such that the amplitude of the noise relative to the vowel was similar to [s] and [s]. The fricative noise was presented to listeners in both its vowel context and in isolation. Results indicated that, when the spectral properties of the fricative noise and formant transitions are compatible, the perceptual effects of the amplitude manipulation of the amplitude of the noise had a small effect on the overall identification of place of articulation, and when effects emerged, they varied across the different fricative stimuli. Moreover, although decreasing the amplitude of [s] and [s] resulted in an increase in [f] and [O] responses, increasing the amplitude of [f] and [O] did not result in an increase in [s] and [s] responses. Implications of these findings for phonetic feature theories are considered.  相似文献   

9.
The purpose of this study was to determine whether children give more perceptual weight than do adults to dynamic spectral cues versus static cues. Listeners were 10 children between the ages of 3;8 and 4;1 (mean 3;11) and ten adults between the ages of 23;10 and 32;0 (mean 25;11). Three experimental stimulus conditions were presented, with each containing stimuli of 30 ms duration. The first experimental condition consisted of unchanging formant onset frequencies ranging in value from frequencies for [i] to those for [a], appropriate for a bilabial stop consonant context. The second two experimental conditions consisted of either an [i] or [a] onset frequency with a 25 ms portion of a formant transition whose trajectory was toward one of a series of target frequencies ranging from those for [i] to those for [a]. Results indicated that the children attended differently than the adults on both the [a] and [i] formant onset frequency cue to identify the vowels. The adults gave more equal weight to the [i]-onset and [a]-onset dynamic cues as reflected in category boundaries than the children did. For the [i]-onset condition, children were not as confident compared to adults in vowel perception, as reflected in slope analyses.  相似文献   

10.
The third formant and the second formant were found on average to cue the place of articulation of intervocalic stop consonants equally well when the stop consonants occurred before the vowel/i/. This result and others provide some support for the notion that the fundamental resonance of the front cavity plays an important role in the perception of the phonetic dimension of place of articulation.  相似文献   

11.
12.
An experiment investigated the effects of amplitude ratio (-35 to 35 dB in 10-dB steps) and fundamental frequency difference (0%, 3%, 6%, and 12%) on the identification of pairs of concurrent synthetic vowels. Vowels as weak as -25 dB relative to their competitor were easier to identify in the presence of a fundamental frequency difference (delta F0). Vowels as weak as -35 dB were not. Identification was generally the same at delta F0 = 3%, 6%, and 12% for all amplitude ratios: unfavorable amplitude ratios could not be compensated by larger delta F0's. Data for each vowel pair and each amplitude ratio, at delta F0 = 0%, were compared to the spectral envelope of the stimulus at the same ratio, in order to determine which spectral cues determined identification. This information was then used to interpret the pattern of improvement with delta F0 for each vowel pair, to better understand mechanisms of F0-guided segregation. Identification of a vowel was possible in the presence of strong cues belonging to its competitor, as long as cues to its own formants F1 and F2 were prominent. delta F0 enhanced the prominence of a target vowel's cues, even when the spectrum of the target was up to 10 dB below that of its competitor at all frequencies. The results are incompatible with models of segregation based on harmonic enhancement, beats, or channel selection.  相似文献   

13.
The perception of voicing in final velar stop consonants was investigated by systematically varying vowel duration, change in offset frequency of the final first formant (F1) transition, and rate of frequency change in the final F1 transition for several vowel contexts. Consonant-vowel-consonant (CVC) continua were synthesized for each of three vowels, [i,I,ae], which represent a range of relatively low to relatively high-F1 steady-state values. Subjects responded to the stimuli under both an open- and closed-response condition. Results of the study show that both vowel duration and F1 offset properties influence perception of final consonant voicing, with the salience of the F1 offset property higher for vowels with high-F1 steady-state frequencies than low-F1 steady-state frequencies, and the opposite occurring for the vowel duration property. When F1 onset and offset frequencies were controlled, rate of the F1 transition change had inconsistent and minimal effects on perception of final consonant voicing. Thus the findings suggest that it is the termination value of the F1 offset transition rather than rate and/or duration of frequency change, which cues voicing in final velar stop consonants during the transition period preceding closure.  相似文献   

14.
The identification of front vowels was studied in normal-hearing listeners using stimuli whose spectra had been altered to approximate the spectrum of vowels processed by auditory filters similar to those that might accompany sensorineural hearing loss. In the first experiment, front vowels were identified with greater than 95% accuracy when the first formant was specified in a normal manner and the higher frequency formants were represented by a broad, flat spectral plateau ranging from approximately 1600 to 3500 Hz. In the second experiment, the bandwidth of the first formant was systematically widened for stimuli with already flattened higher frequency formants. Normal vowel identification was preserved until the first formant was widened to six times its normal bandwidth. These results may account for the coexistence of abnormal vowel masking patterns (indicating flattened auditory spectra) and normal vowel recognition.  相似文献   

15.
We have examined the effects of the relative amplitude of the release burst on perception of the place of articulation of utterance-initial voiceless and voiced stop consonants. The amplitude of the burst, which occurs within the first 10-15 ms following consonant release, was systematically varied in 5-dB steps from -10 to +10 dB relative to a "normal" burst amplitude for two labial-to-alveolar synthetic speech continua--one comprising voiceless stops and the other, voiced stops. The distribution of spectral energy in the bursts for the labial and alveolar stops at the ends of the continuum was consistent with the spectrum shapes observed in natural utterances, and intermediate shapes were used for intermediate stimuli on the continuum. The results of identification tests with these stimuli showed that the relative amplitude of the burst significantly affected the perception of the place of articulation of both voiceless and voiced stops, but the effect was greater for the former than the latter. The results are consistent with a view that two basic properties contribute to the labial-alveolar distinction in English. One of these is determined by the time course of the change in amplitude in the high-frequency range (above 2500 Hz) in the few tens of ms following consonantal release, and the other is determined by the frequencies of spectral peaks associated with the second and third formants in relation to the first formant.  相似文献   

16.
Research on the perception of vowels in the last several years has given rise to new conceptions of vowels as articulatory, acoustic, and perceptual events. Starting from a "simple" target model in which vowels were characterized articulatorily as static vocal tract shapes and acoustically as points in a first and second formant (F1/F2) vowel space, this paper briefly traces the evolution of vowel theory in the 1970s and 1980s in two directions. (1) Elaborated target models represent vowels as target zones in perceptual spaces whose dimensions are specified as formant ratios. These models have been developed primarily to account for perceivers' solution of the "speaker normalization" problem. (2) Dynamic specification models emphasize the importance of formant trajectory patterns in specifying vowel identity. These models deal primarily with the problem of "target undershoot" associated with the coarticulation of vowels with consonants in natural speech and with the issue of "vowel-inherent spectral change" or diphthongization of English vowels. Perceptual studies are summarized that motivate these theoretical developments.  相似文献   

17.
Two experiments investigating the effects of auditory stimulation delivered via a Nucleus multichannel cochlear implant upon vowel production in adventitiously deafened adult speakers are reported. The first experiment contrasts vowel formant frequencies produced without auditory stimulation (implant processor OFF) to those produced with auditory stimulation (processor ON). Significant shifts in second formant frequencies were observed for intermediate vowels produced without auditory stimulation; however, no significant shifts were observed for the point vowels. Higher first formant frequencies occurred in five of eight vowels when the processor was turned ON versus OFF. A second experiment contrasted productions of the word "head" produced with a FULL map, OFF condition, and a SINGLE channel condition that restricted the amount of auditory information received by the subjects. This experiment revealed significant shifts in second formant frequencies between FULL map utterances and the other conditions. No significant differences in second formant frequencies were observed between SINGLE channel and OFF conditions. These data suggest auditory feedback information may be used to adjust the articulation of some speech sounds.  相似文献   

18.
This study complements earlier experiments on the perception of the [m]-[n] distinction in CV syllables [B. H. Repp, J. Acoust. Soc. Am. 79, 1987-1999 (1986); B. H. Repp, J. Acoust. Soc. Am. 82, 1525-1538 (1987)]. Six talkers produced VC syllables consisting of [m] or [n] preceded by [i, a, u]. In listening experiments, these syllables were truncated from the beginning and/or from the end, or waveform portions surrounding the point of closure were replaced with noise, so as to map out the distribution of the place of articulation information for consonant perception. These manipulations revealed that the vocalic formant transitions alone conveyed about as much place of articulation information as did the nasal murmur alone, and both signal portions were about as informative in VC as in CV syllables. Nevertheless, full VC syllables were less accurately identified than full CV syllables, especially in female speech. The reason for this was hypothesized to be the relative absence of a salient spectral change between the vowel and the murmur in VC syllables. This hypothesis was supported by the relative ineffectiveness of two additional manipulations meant to disrupt the perception of relational spectral information (channel separation or temporal separation of vowel and murmur) and by subjects' poor identification scores for brief excerpts including the point of maximal spectral change. While, in CV syllables, the abrupt spectral change from the murmur to the vowel provides important additional place of articulation information, for VC syllables it seems as if the format transitions in the vowel and the murmur spectrum functioned as independent cues.  相似文献   

19.
The perception of subphonemic differences between vowels was investigated using multidimensional scaling techniques. Three experiments were conducted with natural-sounding synthetic stimuli generated by linear predictive coding (LPC) formant synthesizers. In the first experiment, vowel sets near the pairs (i-I), (epsilon-ae), or (u-U) were synthesized containing 11 vowels each. Listeners judged the dissimilarities between all pairs of vowels within a set several times. These perceptual differences were mapped into distances between the vowels in an n-dimensional space using two-way multidimensional scaling. Results for each vowel set showed that the physical stimulus space, which was specified by the two parameters F1 and F2, was always mapped into a two-dimensional perceptual space. The best metric for modeling the perceptual distances was the Euclidean distance between F1 and F2 in barks. The second experiment investigated the perception of the same vowels from the first experiment, but embedded in a consonantal context. Following the same procedures as experiment 1, listeners' perception of the (bv) dissimilarities was not different from their perception of the isolated vowel dissimilarities. The third experiment investigated dissimilarity judgments for the three vowels (ae-alpha-lambda) located symmetrically in the F1 X F2 vowel space. While the perceptual space was again two dimensional, the influence of phonetic identity on vowel difference judgments was observed. Implications for determining metrics for subphonemic vowel differences using multidimensional scaling are discussed.  相似文献   

20.
The intelligibility of speech is sustained at lower signal-to-noise ratios when the speech has a different interaural configuration from the noise. This paper argues that the advantage arises in part because listeners combine evidence of the spectrum of speech in the across-frequency profile of interaural decorrelation with evidence in the across-frequency profile of intensity. To support the argument, three experiments examined the ability of listeners to integrate and segregate evidence of vowel formants in these two profiles. In experiment 1, listeners achieved accurate identification of the members of a small set of vowels whose first formant was defined by a peak in one profile and whose second formant was defined by a peak in the other profile. This result demonstrates that integration is possible. Experiment 2 demonstrated that integration is not mandatory, insofar as listeners could report the identity of a vowel defined entirely in one profile despite the presence of a competing vowel in the other profile. The presence of the competing vowel reduced accuracy of identification, however, showing that segregation was incomplete. Experiment 3 demonstrated that segregation of the binaural vowel, in particular, can be increased by the introduction of an onset asynchrony between the competing vowels. The results of experiments 2 and 3 show that the intrinsic cues for segregation of the profiles are relatively weak. Overall, the results are compatible with the argument that listeners can integrate evidence of spectral peaks from the two profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号