首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To the best of the authors’ knowledge, there are no results based on the so-called Razumikhin technique via a general decay stability, for any type of stochastic differential equations. In the present paper, the Razumikhin approach is applied to the study of both pth moment and almost sure stability on a general decay for stochastic functional differential equations with infinite delay. The obtained results are extended to stochastic differential equations with infinite delay and distributed infinite delay. Some comments on how the considered approach could be extended to stochastic functional differential equations with finite delay are also given. An example is presented to illustrate the usefulness of the theory.  相似文献   

3.
We prove that a closed set K of a finite-dimensional space is invariant under the stochastic control system
dX=b(X,v(t))dt+σ(X,v(t))dW(t),v(t)∈U,  相似文献   

4.
A strong solutions approximation approach for mild solutions of stochastic functional differential equations with Markovian switching driven by Lévy martingales in Hilbert spaces is considered. The Razumikhin–Lyapunov type function methods and comparison principles are studied in pursuit of sufficient conditions for the moment exponential stability and almost sure exponential stability of equations in which we are interested. The results of [A.V. Svishchuk, Yu.I. Kazmerchuk, Stability of stochastic delay equations of Itô form with jumps and Markovian switchings, and their applications in finance, Theor. Probab. Math. Statist. 64 (2002) 167–178] are generalized and improved as a special case of our theory.  相似文献   

5.
We consider a stochastic differential equation with an asymptotically stable equilibrium point. We show that the domain of attraction of the equilibrium, i.e. the set of points which are attracted with positive probability to it, can be characterized by the solution of a suitable partial differential equation.  相似文献   

6.
We provide a short and elementary proof for the recently proved result by G. da Prato and H. Frankowska that - under minimal assumptions - a closed set is invariant with respect to a stochastic control system if and only if it is invariant with respect to the (associated) deterministic control system.  相似文献   

7.
Summary.   We address the following problem from the intersection of dynamical systems and stochastic analysis: Two SDE dx t = ∑ j =0 m f j (x t )∘dW t j and dx t =∑ j =0 m g j (x t )∘dW t j in ℝ d with smooth coefficients satisfying f j (0)=g j (0)=0 are said to be smoothly equivalent if there is a smooth random diffeomorphism (coordinate transformation) h(ω) with h(ω,0)=0 and Dh(ω,0)=id which conjugates the corresponding local flows,
where θ t ω(s)=ω(t+s)−ω(t) is the (ergodic) shift on the canonical Wiener space. The normal form problem for SDE consists in finding the “simplest possible” member in the equivalence class of a given SDE, in particular in giving conditions under which it can be linearized (g j (x)=Df j (0)x). We develop a mathematically rigorous normal form theory for SDE which justifies the engineering and physics literature on that problem. It is based on the multiplicative ergodic theorem and uses a uniform (with respect to a spatial parameter) Stratonovich calculus which allows the handling of non-adapted initial values and coefficients in the stochastic version of the cohomological equation. Our main result (Theorem 3.2) is that an SDE is (formally) equivalent to its linearization if the latter is nonresonant. As a by-product, we prove a general theorem on the existence of a stationary solution of an anticipative affine SDE. The study of the Duffing-van der Pol oscillator with small noise concludes the paper. Received: 19 August 1997 / In revised form: 15 December 1997  相似文献   

8.
Discretization and simulation of stochastic differential equations   总被引:3,自引:0,他引:3  
We discuss both pathwise and mean-square convergence of several approximation schemes to stochastic differential equations. We then estimate the corresponding speeds of convergence, the error being either the mean square error or the error induced by the approximation on the value of the expectation of a functional of the solution. We finally give and comment on a few comparative simulation results.  相似文献   

9.
Summary We establish the existence and uniqueness of the solution to a multidimensional linear Skorohod stochastic differential equation with deterministic diffusion matrix, using the notions of Wick product andStransform. If the diffusion matrix is constant and has real eigenvalues, the solution is a stochastic process with moments of all orders, provided that the initial condition is differentiable up to a suitable order. The case of a diffusion matrix in the first Wiener chaos is discussed in the last section.Supported by the Deutsche Forschungsgemeninschaft/Heisenberg ProgrammSupported by the DGICYT grant PB 90-0452  相似文献   

10.
In [R. Buckdahn, B. Djehiche, J. Li, S. Peng, Mean-field backward stochastic differential equations. A limit approach. Ann. Probab. (2007) (in press). Available online: http://www.imstat.org/aop/future_papers.htm] the authors obtained mean-field Backward Stochastic Differential Equations (BSDE) associated with a mean-field Stochastic Differential Equation (SDE) in a natural way as a limit of a high dimensional system of forward and backward SDEs, corresponding to a large number of “particles” (or “agents”). The objective of the present paper is to deepen the investigation of such mean-field BSDEs by studying them in a more general framework, with general coefficient, and to discuss comparison results for them. In a second step we are interested in Partial Differential Equations (PDE) whose solutions can be stochastically interpreted in terms of mean-field BSDEs. For this we study a mean-field BSDE in a Markovian framework, associated with a McKean–Vlasov forward equation. By combining classical BSDE methods, in particular that of “backward semigroups” introduced by Peng [S. Peng, J. Yan, S. Peng, S. Fang, L. Wu (Eds.), in: BSDE and Stochastic Optimizations; Topics in Stochastic Analysis, Science Press, Beijing (1997) (Chapter 2) (in Chinese)], with specific arguments for mean-field BSDEs, we prove that this mean-field BSDE gives the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated with mean-field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.  相似文献   

11.
Solvability of linear forward-backward stochastic differential equations (FBSDEs, for short) with random coefficients is studied. A decoupling reduction method is introduced via which a large class of linear FBSDEs with random or deterministic time-varying coefficients is proved to be solvable. On the other hand, by means of Four Step Scheme, a Riccati backward stochastic equation (BSDE, for short) for (m×n) matrix-valued processes is derived. Global solvability of such Riccati BSDEs is discussed for some special (but nontrivial) cases, which leads to the solvability of the corresponding linear FBSDEs. This work is supported in part by the NSFC, under grant 10131030, the Chinese Education Ministry Science Foundation under grant 2000024605, the Cheung Kong Scholars Programme, and Shanghai Commission of Science and Technology under grant 02DJ14063.  相似文献   

12.
The aim of this paper is to give a generalization of the well-known theorem of Perron for uniform exponential dichotomy in mean square for stochastic cocycles in Hilbert spaces.  相似文献   

13.
Summary Consider a stochastic differential equation on d with smooth and bounded coefficients. We apply the techniques of the quasi-sure analysis to show that this equation can be solved pathwise out of a slim set. Furthermore, we can restrict the equation to the level sets of a nondegenerate and smooth random variable, and this provides a method to construct the solution to an anticipating stochastic differential equation with smooth and nondegenerate initial condition.  相似文献   

14.
We extend the well posedness results for second order backward stochastic differential equations introduced by Soner, Touzi and Zhang (2012)  [31] to the case of a bounded terminal condition and a generator with quadratic growth in the zz variable. More precisely, we obtain uniqueness through a representation of the solution inspired by stochastic control theory, and we obtain two existence results using two different methods. In particular, we obtain the existence of the simplest purely quadratic 2BSDEs through the classical exponential change, which allows us to introduce a quasi-sure version of the entropic risk measure. As an application, we also study robust risk-sensitive control problems. Finally, we prove a Feynman–Kac formula and a probabilistic representation for fully non-linear PDEs in this setting.  相似文献   

15.
By replacing the final condition for backward stochastic differential equations (in short: BSDEs) by a stationarity condition on the solution process we introduce a new class of BSDEs. In a natural manner we associate to such BSDEs the periodic solution of second order partial differential equations with periodic structure. Received: 11 October 1996 / Revised version: 15 February 1999  相似文献   

16.
In a recent paper, Soner, Touzi and Zhang (2012) [19] have introduced a notion of second order backward stochastic differential equations (2BSDEs), which are naturally linked to a class of fully non-linear PDEs. They proved existence and uniqueness for a generator which is uniformly Lipschitz in the variables yy and zz. The aim of this paper is to extend these results to the case of a generator satisfying a monotonicity condition in yy. More precisely, we prove existence and uniqueness for 2BSDEs with a generator which is Lipschitz in zz and uniformly continuous with linear growth in yy. Moreover, we emphasize throughout the paper the major difficulties and differences due to the 2BSDE framework.  相似文献   

17.
In this paper we discuss split-step forward methods for solving Itô stochastic differential equations (SDEs). Eight fully explicit methods, the drifting split-step Euler (DRSSE) method, the diffused split-step Euler (DISSE) method and the three-stage Milstein (TSM 1a-TSM 1f) methods, are constructed based on Euler-Maruyama method and Milstein method, respectively, in this paper. Their order of strong convergence is proved. The analysis of stability shows that the mean-square stability properties of the methods derived in this paper are improved on the original methods. The numerical results show the effectiveness of these methods in the pathwise approximation of Itô SDEs.  相似文献   

18.
Summary We introduce a new class of backward stochastic differential equations, which allows us to produce a probabilistic representation of certain quasilinear stochastic partial differential equations, thus extending the Feynman-Kac formula for linear SPDE's.The research of this author was partially supported by DRET under contract 901636/A000/DRET/DS/SRThe research of this author was supported by a grant from the French Ministère de la Recherche et de la Technologie, which is gratefully acknowledged  相似文献   

19.
For a mixed stochastic differential equation driven by independent fractional Brownian motions and Wiener processes, the existence and integrability of the Malliavin derivative of the solution are established. It is also proved that the solution possesses exponential moments.  相似文献   

20.
Introducing certain singularities, we generalize the class of one-dimensional stochastic differential equations with so-called generalized drift. Equations with generalized drift, well-known in the literature, possess a drift that is described by the semimartingale local time of the unknown process integrated with respect to a locally finite signed measure νν. The generalization which we deal with can be interpreted as allowing more general set functions νν, for example signed measures which are only σσ-finite. However, we use a different approach to describe the singular drift. For the considered class of one-dimensional stochastic differential equations, we derive necessary and sufficient conditions for existence and uniqueness in law of solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号