首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A study has been made on the compatibility of recycled polyethylene terephthalate (R-PET) and low density polyethylene (LDPE) blend in the presence of ethylene vinyl acetate (EVA) as a compatibilizing agent prepared by extrusion hot stretching process. EVA content in the blend as a compatibilizing agent was an enhancement effect on radiation crosslinking of R-PET/EVA/LDPE blends and the highest radiation crosslinking was obtained when the EVA content was reached at 10 % EVA when irradiated by gamma irradiation. Blends containing different (EVA) ratios were irradiated to different doses of gamma irradiation 25, 50 and 100 kGy. The effect of the compatibilizer and radiation on mechanical, thermal properties of R-PET together with LDPE and morphology has been investigated. It was found that gamma irradiation together with the presence of compatibilizing agent (EVA) has positive effect on the mechanical and thermal properties of R-PET/LDPE blend. The structural properties of R-PET/LDPE modified by gamma irradiation and EVA as compatibilizing agent was examined by SEM. Also, it was found that the optimum concentration of EVA and gamma irradiation dose was found to be 10 % EVA and 100 kGy, respectively.  相似文献   

2.
Summary: This study intends to replace polyethylene multi-layer films used in food packaging industry with single-layer polyethylene nanocomposites films. Nanocomposites of LDPE/LLDPE/ montmorillonite organoclay were prepared by melt compounding in a twin extruder and then film blown to prepare thin films. LLDPE-g-MA was used as compatibilizer to achieve better interaction between the blend and organoclay. Various compositions of organoclay and compatibilizer were prepared. The structure of nanocomposites was characterized by XRD and TEM. Permeability properties were measured using a permeability measuring set-up and aspect ratio of the particles was evaluated using permeability data. The results showed that addition of organoclay even at low level (below 5 phr) had significant effect on barrier properties of the nanocomposites. Oxygen permeability decreased by 50% by adding only 3 phr of nanoclay into the blend. Crystalline structure of the nanocomposites was studied by DSC. Addition of clay also led to increase in melting point and somewhat decrease in the crystalline level. Given the fact that crystals are effectively non-permeable, the concomitant reduction in crystallinity of the blend with decrease in permeability suggests that barrier properties arise from tortuousity of nanoparticles in the blend.  相似文献   

3.
The production of exfoliated polymer/clay based nanocomposites is crucial to obtain an actual benefit of nanoscale reinforcement in the polymer matrix. In this project, the production of exfoliated polymer/clay nanocomposite was aimed through the use of poly(ethylene-co-vinyl acetate) (EVA) copolymer as matrix and organically modified montmorillonite (O-MMT) as nanofiller. The research work involved the use of pre-swelled technique through magnetic stirring and ultra-sonication to obtain more readily exfoliated and dispersed O-MMT nanofiller for EVA nanocomposite production. The aims were to allow the improvement in O-MMT exfoliation and dispersion when the nanofiller was incorporated in high loading (greater than 3 wt%) into the copolymer. The original and pre-swelled O-MMTs were employed to produce the EVA/O-MMT nanocomposites with 1, 3, 5, 7 and 9 wt% nanofiller by melt compounding technique. The results of TEM, tensile and fatigue tests, XRD, FTIR and DMA proved that the pre-swelling technique applied on the O-MMT before melt compounding with the EVA copolymer can bring positive impact to the performance of the nanocomposite. As opposed to the original O-MMT, the pre-swelled O-MMT has the ability to improve the tensile toughness, cyclic stability and storage modulus of the EVA copolymer even when high O-MMT loading (7 wt %) was employed. Improvement in the EVA - O-MMT interactions in the nanocomposite system was postulated to be the main reason for such observations.  相似文献   

4.
张琴  傅强 《高分子科学》2009,(6):833-842
Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene an...  相似文献   

5.
Blown films based on low density polyethylene (LDPE) organoclay nanocomposites (NCs) were obtained by melt extrusion followed by film blowing, using a zinc ionomer of poly(ethylene-co-methacrylic acid) (Pema-Zn) as a compatibilizer. The parameters studied were the compatibilizer and the montmorillonite (MMT) contents that ranged from 0 to 20% and from 0 to 5%, respectively. The presence of clay hindered Pema-Zn crystallization indicating the existence of interaction between the Pema-Zn and the clay. Analysis of the nanostructure showed that the MMT was found inside microscopic domains of Pema-Zn distributed throughout the LDPE matrix. The addition of Pema-Zn improved the dispersion of the clay in LDPE films resulting in synergistic improvements in the mechanical properties. These improvements occur both in the machine and transverse directions. Thus, the presence of Pema-Zn is a determining factor in biaxiality and can clearly be attributed to the bidimensional laminar structure of clays such as MMT.  相似文献   

6.
The effects of the compatibilizer polyethylene grafted with glycidyl methacrylate (PE‐g‐GMA) on the properties of low‐density polyethylene (LDPE) (virgin and reprocessed)/corn starch blends were studied. LDPE (virgin and reprocessed)/corn starch blends containing 30, 40 and 50 wt% starch, with or without compatibilizer, were prepared by extrusion and characterized by the melt flow index (MFI), tensile test, dynamic mechanical analysis (DMTA) and light microscopy. The addition of starch to LDPE reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The decreases in the MFI and tensile properties were most evident when 40 and 50 wt% starch were added. Blends containing 3 wt% PE‐g‐GMA had higher tensile strength values and lower MFI values than blends without compatibilizer. Light microscopy showed that increasing the starch content resulted in a continuous phase of starch. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Commercial grades of high density polyethylene, HDPE and waste poly(ethylene terephthalate), PET were melt blended over a wide range of compositions. Effect of ethylene acrylic acid copolymer, EAA, ethylene vinyl acetate copolymer, EVA and maleic anhydride grafted EVA as compatibilizers on rheology and mechanical properties of the blend was studied. EAA was found most suitable compatibilizer.  相似文献   

8.
Polypropylene layered silicate nanocomposites based on muscovite clay were prepared via melt compounding using Thermo Haake internal mixer. Muscovite was organically modified with cetyltrimethylammonium bromide (CTAB). Poly(propylene-g-maleic anhydride) copolymer (PP-g-MAH) and polypropylene-methyl polyhedral oligomeric silsesquioxane (PP-POSS) were used as a compatibilizer in the nanocomposite system at concentration of 3.0 wt% based on muscovite content. Consequently effect of compatibilizer on the mechanical properties of the nano–composites was characterized. It was found that the PP-g-MAH compatibiliser possess better overall mechanical properties than the nanocomposites with PP-POSS compatibilizer. The reason was partly due to better adhesion provided by compatibilization effect of PP-g-MAH than PP-POSS as exhibited in scanning electron micrographs.  相似文献   

9.
ABSTRACT

The role of di-cumyl peroxide (DCP) as compatibilizer in low density Polyethylene/Polypropylene (LDPE/PP) blends has been explored. Mixtures with varying LDPE/PP ratio were prepared in a Brabender plasticorder and tested for their mechanical properties and calorimetric response. Then peroxide was added at concentrations up to 0.5%, and the mechanical properties of the these new blends were measured. Also, the mixing torque, melt flow index and gel content of the above products were recorded as a function of peroxide concentration. It was found that the incorporation of DCP restricts the thermoplastic characteristics of the melt, which was primarily attributed to branching which occurs in LDPE. This results in an enhancement in the adhesive bonding between the two polymers mainly due to chain entanglements. This was further supported by the fact that mechanical properties of the treated blend were significantly improved.  相似文献   

10.
通过DSC和WAXD研究了高密度聚乙烯/低密度聚乙烯/乙烯-醋酸乙烯共聚物(HDPE/LDPE/EVA)三元共混体系的热行为和结晶性能。发现当HDPE含量小于40%时,EVA对LDPE起稀释剂作用,促进HDPE、LDPE的晶相分离,使HDPE、LDPE单独结晶.当HDPE含量高于40%时,LDPE片晶进入HDPE晶相。形成与LDPE在片晶水平上的共晶。  相似文献   

11.
含二烯丙基双酚A醚相容剂对HDPE/PC共混体系的影响   总被引:3,自引:0,他引:3  
用低密度聚乙烯接枝二烯丙基双酚A醚(LDPE g DBAE)作为高密度聚乙烯/聚碳酸酯(HDPE/PC)共混体系的增容剂,研究了其对HDPE/PC共混体系的影响.通过共混物形态观察、热力学性能测试和结晶性分析,发现LDPE g DBAE对HDPE/PC共混体系有良好的增容效果.并发现了增容剂在共混物中的最佳用量为10phr,提高增容剂的接枝率更有利于改善共混物的性能  相似文献   

12.
Well dispersed polypropylene (PP)/sepiolite clay nanocomposites were prepared successfully using supercritical carbon dioxide (scCO2) assisted mixing with and without the presence of maleic anhydride grafted polypropylene (PP-g-MA) as compatibilizer. The resulting morphology and polymorphism of nanocomposites were established using X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations. The mechanical properties of the nanocomposites were investigated and compared with those obtained by a traditional melt compounding method. Our results showed that by using scCO2 in the process, we were able to obtain better sepiolite dispersions and reduce breakage of sepiolite fibres. Consequently, a significant improvement in the yield stress was observed for the nanocomposites processed in scCO2 compared to those processed by the traditional melt compounding. XRD data also indicated that the resulting nanocomposites had only α-phase crystallites of PP while the presence of sepiolite could also induce preferred orientation of these α-phase crystallites.  相似文献   

13.
采用熔融共混法制备了碳纳米管(CNT)填充改性的聚对苯二甲酸丙二酯(PTT)/乙烯-醋酸乙烯酯共聚物(EVA)三元复合材料.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、接触角测量仪、旋转流变仪等研究了该复合材料中碳纳米管的分布、不相容的相形态以及流变和力学性能.研究结果表明,与EVA相比,PTT组分具有较低...  相似文献   

14.
The influence of electron beam (EB) irradiation and organoclay (OC) loading on the properties of low‐density polyethylene (LDPE)/ethylene‐vinyl acetate (EVA) blends was investigated. The samples were subjected to the EB irradiation with the dose values of 50 and 250 kGy. X‐ray diffraction (XRD), gel content, mechanical, thermal, and electrical properties were utilized to analyze the characteristics of the LDPE/EVA blends with and without OC at different irradiation dosages. Gel content analysis showed that the OC promotes considerably the insoluble part so that the LDPE/EVA blends filled with OC become fully crosslinked at 250 kGy; possibly through the formation of further crosslinks between OC and polymer chains. The samples irradiated by EB showed enhanced mechanical properties due to the formation of three‐dimensional networks. In addition, thermogravimetric analysis indicated that combined OC loading and radiation‐induced crosslinking improved thermal stability of LDPE/EVA blends considerably. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Active antimicrobial packaging is a promising form of active packaging that can kill or inhibit microorganism growth in order to maintain product quality and safety. One of the most common approaches is based on the release of volatile antimicrobial agents from the packaging material such as essential oils. Due to their highly volatile nature, the challenge is to preserve the essential oils during the high‐temperature melt processing of the polymer, while maintaining high antimicrobial activity for a desired shelf life. This study suggests a new approach in order to achieve this goal. Antimicrobial active films are developed based on low‐density polyethylene (LDPE), organo‐modified montmorillonite clays (MMT) and carvacrol (used as an essential oil model). In order to minimize carvacrol loss throughout the polymer compounding, a pre‐compounding step is developed in which clay/carvacrol hybrids are produced. The hybrids exhibit a significant increase in the d‐spacing of clay and enhanced thermal stability. The resulting LDPE/(clay/carvacrol) films exhibit superior and prolonged antibacterial activity against Escherichia coli and Listeria innocua, while polymer compounded with pure carvacrol loses the antibacterial properties within days. The films also present an excellent antifungal activity against Alternaria alternata, used as a model plant pathogenic fungus. Furthermore, infrared spectroscopy analysis of the LDPE/(clay/carvacrol) system displayed significantly higher carvacrol content in the film as well as a slower out‐diffusion of the carvacrol molecules in comparison to LDPE/carvacrol films. Thus, these new films have a high potential for antimicrobial food packaging applications due to their long‐lasting and broad‐spectrum antimicrobial efficacy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Polypropylene (PP)/Montmorillonite (MMT) nanoclay based composite was prepared by melt compounding with maleic anhydride grafted polypropylene (MA-g-PP) as a compatibilizer in a twin-screw extruder, and the test specimens were injection molded. Mechanical properties such as tensile modulus, flexural modulus, yield strength and maximum percent strains were measured for pure PP and PP based nanocomposite to establish the effect of clay platelet reinforcement. The fracture properties were measured by using the essential work of fracture (EWF) method. PP/clay nanocomposite shows 25% improvement in specific EWF compared to pure PP. The variation of EWF parameters with loading rate is discussed, whilst the mechanisms of fracture are considered in a subsequent paper.  相似文献   

17.
High oxygen barrier films were prepared based on low‐density polyethylene (LDPE)/ethylene vinyl alcohol (EVOH)/ nanoclay and polyethylene‐grafted‐maleic anhydride (LDPE‐g‐MA) as a compatibilizer. Box–Behnken statistical experiment design methodology was employed to study the effects of nanoclay, LDPE‐g‐MA, and EVOH presence and their contents on various properties of the final films. The R2 parameter varied between 0.89 and 0.99 for all the obtained responses. The morphology of the samples was evaluated. Results of oxygen transfer rate (OTR) test indicated that the addition of EVOH up to 30 wt% to neat LDPE can decrease oxygen permeability significantly. The addition of nanoclay also decreased the permeability of resulting films but, LDPE‐g‐MA reduced the permeability of the films only at an optimal content. Elastic modulus was increased with the addition of nanoclay, EVOH, and LDPE‐g‐MA to the matrix. An increase in EVOH content in the samples improved the tensile strength. Effect of nanoclay on tensile strength was highly dependent on the presence of a compatibilizer. The addition of compatibilizer to the samples and increasing its content enhanced the tensile strength of the specimens. Incorporation of nanoclay, EVOH, and LDPE‐g‐MA to the LDPE matrix and increasing the amount of these components in the samples led to higher storage modulus, zero shear rate viscosity, and shear thinning exponent, but, lowered the terminal slope and the frequency of intersection point of storage modulus (G′) and loss modulus (G″). The only exception was that EVOH increment resulted in a lower shear thinning exponent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, a highly toughened PLA was prepared through physical melt-blending with EVA at the presence of hydrophilic nanosilica and SEBS-g-MA block copolymer compatibilizer. The effect of nanosilica and compatibilizer on the morphology, mechanical properties, and linear rheology of the PLA/EVA blends was also investigated. According to TEM images, nanosilica was selectively located in the PLA matrix while some were placed on the interface between the two polymers as was also predicted by thermodynamic and kinetic analysis. Upon the addition of nanoparticles, the interfacial adhesion between the phases was enhanced and the average droplet size decreased. Interestingly, incorporation of SEBS-g-MA induced morphological changes as the spherical EVA droplets turned into a cylindrical shape. DSC results indicated that blending with EVA copolymer resulted in the reduction of crystallization of PLA matrix; however, the crystallinity increased at the presence of nanoparticles up to 5 wt%. The addition of compatibilizer considerably hindered the crystallization of the PLA phase. PLA/EVA blend containing optimum levels of nanosilica exhibited considerably enhanced tensile toughness, elongation at break, and impact strength. On the other hand, the simultaneous addition of nanoparticles and SEBS-g-MA led to synergistic toughening effects and the compatibilized blend containing nanosilica exhibited excellent impact toughness. For instance, the elongation at break of the compatibilized PLA/EVA blend containing the optimal content of nanosilica was increased from 7% to 121% (compared to neat sample). The notched Izod impact strength was also increased from 5.1 to 65 kJ/m2. Finally, the microstructure of the blends was assessed by rheological measurements.  相似文献   

19.
Graphite (expanded graphite(EG), natural graphite (NG) and graphite oxide (GO)) flame retardant poly(ethylene-co-vinyl acetate) copolymer (EVA) composites (EVA/EG, EVA/NG and EVA/GO) have been prepared by melt compounding. The flammability, the combustion process, the quantity of the residual char, the morphology of the residual chars and the thermal stability of the chars were investigated by cone calorimeter, SEM and TGA. The results indicate that heat release rate (HRR), total heat released (THR) and total smoke release (TSR) of EVA/EG (EG 30 phr) composite decrease to about 21%, 42% and 28% of that of pure EVA, respectively. The orders of the three kinds of graphite on the reduction effect of THR and TSR are EG > NG > GO. The higher the quantity, the higher is the thermal stability of the char residue and the more compact and porous char structure may be the main reasons for the phenomenon above. It has been found that the flame retardance of EVA vulcanisates is improved and the fire jeopardizing is dramatically reduced due to the addition of the graphite, especially for EG, which can give some advice to design formulations for practical applications as the jackets of cables.  相似文献   

20.
Polyethylene (PE)‐layered vermiculite (VMT) nanocomposites were fabricated via direct melt compounding in a twin‐screw extruder followed by injection molding. Exfoliated PE/VMT nanocomposites were readily prepared via in situ melt mixing of maleic anhydride modified VMT with PE. Maleic anhydride acts as either the intercalation agent for VMT or as a compatibilizer for the PE and VMT phases. X‐ray diffraction and transmission electron microscopic observations revealed the formation of exfoliated PE/VMT nanocomposites. The experimental results showed that the storage modulus and strength of nanocomposites tend to increase with an increasing VMT content. Nearly 25.35% increment in the tensile strength and 50% increment in the storage modulus were achieved by incorporating 4 wt % VMT into PE. The thermal properties of the nanocomposites were investigated by dynamic mechanical analysis and differential scanning calorimetry. The glass‐transition temperature of PE/VMT nanocomposites appeared to increase upon the introduction of VMT into the PE matrix. The effects of maleic anhydride addition on the formation of the PE/VMT nanocomposites are discussed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1476–1484, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号