首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 875 毫秒
1.
Salen Schiff base complexes are some of the most important stereochemical models in transition metal coordina tion chemistry, with their ease of preparation and structural variation. [1] Salen complexes are extensively used as organic reaction catalysts, it was reported to be used in asymmetric cyclopropanation, epoxidation, aziridination, hydrolysis, alkylation, Diels-Alder reaction, reduction, oxidation etc. Here we report the synthesis and structure of a new salen nickel complex 4.  相似文献   

2.
Xiao  Qiang  WEI  Ping  ZOU 《中国化学快报》2003,14(3):263-266
Two new blue luminescent zinc and beryllium complexes with Schiff base calixarene derivative as the ligand were prepared.Their luminescent properties were determined,which indicated that they had strong blue fluorescent properties.They also had good solubility and film formation.These new complexes can be used as blue organic electroluminescent materials (OELMs) in organic electroluminescent devices.  相似文献   

3.
Application of Microwave Heating Technique to Esterification   总被引:1,自引:0,他引:1  
Introduction Although the application of microwave technique has been reported as a new type of energy source chemically, it is only in recent years that this technique has been used as the energy source for organic synthesis. In 1986, R. Gedye, et al., published the report of the benzoate synthesis from the respective reactions between benzene carboxylic acid and methanol, propanol or butanol under microwave heating and the catalysis of H_2SO_4.  相似文献   

4.
Chiral amino alcohols have interesting biological activities and are used widely as chiral ligands in metal-mediated organic reactions[1―3]. Although many amino alcohols can be derived from the available amino acids, the asymmetric synthesis is an important method to get novel amino alcohols. Tillyer et al.[4] reported a new, highly stereoselective synthesis of cyclic (1S,2R)-cis amino alcohols A from keto oxime ethers B, via the enantioselective reduction catalyzed by oxazaborolidine C in …  相似文献   

5.
The study of ionic organotin compounds is of current attention owing to their diversified molecular structures and wide range of applications, such as biological activities[1 ~3] and as catalysts in organic synthesis. [4] Recently, we synthesized some new ionic organotin compounds by dephenylation reaction. [5] In this paper, we continued to study the reaction of mercaptoacetic acid with phenyltin trichloride in the presence of organic base. The reaction equation was as follows:  相似文献   

6.
Novel method for synthesis of titanium silicalite-1 (TS-1)   总被引:2,自引:0,他引:2  
Titanium silicalite-1 (TS-1) was easily synthesized using inorganic silicon and titanium source, tetrapropylammonium bromide (TPABr) or TPAOH as templating molecule, NH3· H2O, HDA or TEAOH etc. as base sources. In this system, TPA cations (come from TPABr or TPAOH) served as tern-plating agents to direct the MFI structure. NH3H2O, TEAOH or HDA etc. provides the alkalinity necessary for crystallization. X-ray diffraction, UV-Vis, ER spectroscopies, SEM, 29 Si MAS NMR showed that the zeolites obtained possessed all the structural characteristics of TS-1, and titanium atoms were introduced into the framework in TS-1. This material was proved to have high crystallinity and high catalytic activity to allyl chloride epoxidation and propylene epoxidation. All the samples synthesized had similar catalytic properties with a standard TS-1 through compared inorganic reactant system with organic synthesis system using propylene epoxidation. The effects of silicon source and TPABr/SiO2 ratio were discussed.  相似文献   

7.
Hierarchically mesoporous titanosilicate Ti-SBA-1 was synthesized with organic mesomorphous complexes of polyelectrolyte(poly(acrylic acid)(PAA)) and cationic surfactant(hexadecyl pyridinium chloride(CPC)) as template, tetraethylsiloxane as silica source and titanium ethoxide as titanium source.By adjusting the amount of titanium ethoxide in the synthesis, a series of Ti-SBA-1 particles with different Si/Ti ratio(79–180) were prepared. After incorporation of Ti into the silica framework the wellordered cubic Pm3n mesostructure remained, as well as the morphology, particle size. UV–vis DR spectra of the Ti-SBA-1 materials indicated that incorporated titanium species existed in a highly dispersed state and exhibited tetrahedral and octahedral coordination in the silica framework.  相似文献   

8.
Organoselenium and tellurium compounds have received much attention not only as synthetic reagents or intermediates in organic synthesis but also as promising donor molecules for conductive materials.[1] A number of synthetic methods have been reported to prepare organoselenium and tellurium derivatives. A convenient and general method to introduce a selenium or tellurium moiety into organic molecules is the reaction of a metal selenolate or tellurolate with appropriate electrophiles such as organic halides, acyl chlorides, epoxides, and α, β-enones.[2] However, it is difficult to synthesize the unsymmetrical diarylselenides and tellurides through the reaction of selenide anion with organic halides because of the less reactivity of aryl halides. To accomplish this purpose, the reaction (iodobenzene with phenylselenol)was generally carried out in the presence of catalysts, ligands and strong bases. But, the reaction needs longer time to accomplish and form the products in moderate yields.  相似文献   

9.
For the preparation of high-active and high-isospecific catalysts for propylenepolymerization,various supports such as Mg-alkyls[1 ] ,Mg( OH) 2 [2 ] ,Mg O[3] ,Mg Cl2 [4] .Grignard compounds[5] ,or magnesium alkoxide[6] had been used.Lately,Mg( OEt) 2 -supported Ti Cl4catalysts including an organic chloride and/ or an internal donor preparedby physical milling method and chemical reaction method were studied and it was foundthat Mg( OEt) 2 is converted to Mg Cl2 by reaction with Ti Cl4a…  相似文献   

10.
In modem organic chemical research, 4H-benzo-[b]-pyran and their derivatives have attracted strong interest due to their useful biological and pharmacological properties. Herein, we report a clean one-pot synthesis of 2-amino-3-cyano-4-aryl-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydro-benzo-[b]-pyrans from aromatic aldehyde, malononitrile and 5,5-dimethyl-1,3-cyclohexadione using hexadecyl trimethyl ammonium bromide (HTMAB) as the catalyst. This method provides several advantages such as high yield, simple work-up procedure and environmental friendliness. All the products were characterized by 1H NMR and IR analyses.  相似文献   

11.
The conventional and modified synthesis of titanium silicalite-1 is in the organic system[1,2]. We have reported the TS-1 could be prepared with colloidal SiO2 and TiCl3 as Si source and Ti source respectively in inorganic system[3]. The present paper deals with the ammoximation of cyclohexanone to cyclohexanone oxime over TS-1 prepared by the method described above. Tests are carried out for 5 hours at 65℃,with NH3 and H2O2 in the liquid phase, acetone as solvent, reactants adding to reactor all at once over these two kinds of TS-1. The results show that oxime yield over TS-1 produced in inorganic system is as good as or better than that catalyzed by conventional TS-1 at the same conditions. More over, more satisfied yield of oxinone could be achieved if it reacts at some optimal reaction conditions[4,5]. In addition, the same result has been reached at the epoxidation of propylene catalyzed by these two kinds of TS-1 Following table is the results of reaction catalyzed by these two kinds of TS-1.  相似文献   

12.
Metallosupramolecular tetrahedra M8[L4Ti4] are easily obtained by self-assembly from the triangular ligands L-H6 and titanoyl bis(acetylacetonate) in the presence of alkali metal carbonates as base. All the complexes can be well characterized by 1H NMR in combination with ESI FT-ICR MS. Force field calculations reveal that the tetrahedra show Ti-Ti separations of 17 angstroms ([L1(4)Ti4]8-) and 23.5 angstroms ([L2(4)Ti4]8-), respectively, leading to huge internal cavities. The cavity is readily shielded in the case of L1 but possesses big pores with the bigger ligand L2. [L1(4)Ti4]8- was used to investigate the host-guest chemistry of these container molecules and it was found that cationic organic guest species like anilinium can be introduced in the interior of the complex. Inclusion is nicely followed by NMR spectroscopy. Upon addition of one equivalent of guest the symmetry of the tetrahedron is lost but is regained after addition of significantly more than four equivalents.  相似文献   

13.
研究了全氟烷基磺酰氟/甲基三乙氧基硅烷/碱体系与α-芳基-α-羟基酮(酯)化合物不期望的氧化反应, 以中等到优良的收率生成了相应的1,2-二酮(α-酮酸酯)产物. 所用全氟烷基磺酰氟为全氟正丁基磺酰氟或全氟正辛基磺酰氟; 碱为1,8-二氮杂二环[5.4.0]十一碳-7-烯(DBU). 提出了一种可能的反应机理. 为制备芳基取代的1,2-二酮(或α-酮酸酯)化合物提供了一种新方法.  相似文献   

14.
A simple, convenient, and efficient one-pot method for the preparation of benzofuran is reported. Sonogashira coupling reaction of aryl iodides with 2-methyl-3-butyn-2-ol was used as an acetylene source in the presence of Pd(PPh3)2Cl2 and CuI. Deprotection of the acetylene moiety in the same pot using a strong base and the second Sonogashira coupling/cyclization of and substituted o-iodophenols led to the formation of the appropriate benzo[b]furans. These protocols also can be used in the synthesis of natural products and indoles.  相似文献   

15.
[reaction: see text] The Ti(III)-catalyzed reaction of a series of vinylepoxides leads, with regio- and E-diastereoselectivity control, to good-to-excellent yields of the corresponding homocoupling products. This homocoupling reaction, which involves a new C-C bond-forming method, takes place via a S(N)2' process between an allyltitanium species and the starting vinylepoxide. The process can be used for the rapid and efficient formation of highly valuable intermediates for organic synthesis, as well as new interesting homologues of natural products.  相似文献   

16.
Titanium silicalite-1 (TS-1) is an important catalyst for selective oxidation reactions. However, the nature and structure of the active sites and the mechanistic details of the catalytic reactions over TS-1 have not been well-understood, leaving a continuous debate on the genesis of active sites on the TS-1 surface in the literature. In this work, the location of Si vacancies and [Ti(OSi)(4)] and [Ti(OSi)(3)OH] sites in the MFI (Framework Type Code of ZSM-5 (Zeolite Socony Mobile-Five)) framework has been studied using a full ab initio method with 40T clusters with a Si:Ti molar ratio of 39:1. It was shown that the former four energetically favorable sites for Si vacancies are T6, T12, T4, and T8 and for Ti centers of [Ti(OSi)(4)] are T10, T4, T8 and T11, being partially the same sites. Whether by replacing Si vacancies or substituting the fully coordinated Si sites, the most preferential site for Ti is T10, which indicates that the insertion mechanism does not affect the favorable sites of Ti in the MFI lattice. For the defective [Ti(OSi)(3)OH] sites, it was found that the Si vacancy at T6 with a Ti at its neighboring T9 site (T6-def-T9-Ti pair) is the most energetically favorable one, followed by a T6-def-T5-Ti pair with a small energy gap. These findings are significant to elucidate the nature of the active sites and the mechanism of reactions catalyzed by TS-1 and to design the TS-1 catalyst.  相似文献   

17.
The utilization of 3-methyl-4H-[1,2,4]-oxadiazol-5-one as a versatile protected acetamidine is demonstrated through employment in a variety of synthetic sequences. The potassium salt (2a) or the neutral form (2b) is alternatively shown to be superior for various synthetic reactions (i.e., alkylation, Michael addition, Mitsunobu) to incorporate side chains for further synthesis. The 3-methyl-4H-[1,2,4]-oxadiazol-5-one moiety was found to be stable to acid or base under non-aqueous conditions. It was also found to be stable to many reagents commonly used for organic synthesis. Despite this stability, the free acetamidine may be released by mild reduction including Lindlar hydrogenation or dissolving metal reductions. Alternatively, the hydroxyl amidine may be formed via alkaline hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号