首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To achieve the maximum area utilization ratio for a parallel electrode capacitor, an Archimedean spiral was used to design the capacitor pattern. Multi-walled vertically aligned carbon nanotubes (VACNTs) were used for the capacitor electrodes because of their metallic properties and their endurance toward various chemical reagents. In contrast to the parallel plate capacitor, the total capacitance was formed by parallel connections of all unit cells of the individual VACNT capacitors, so that a relatively higher capacitance was obtained. This design can provide a new approach to fill diverse dielectrics into a spiral capacitor to obtain different capacitances for various applications.  相似文献   

2.
An extension of the classical Ising model to a situation including a source of spin-flip excitations localized on the scale of individual spins is considered. The scenario is realized by scanning tunneling microscopy of the Si(100) surface at low temperatures. Remarkable details, corresponding to the passage of phasons through the tunnel junction, are detected by the STM within the short span between two atoms comprising an individual Si dimer.  相似文献   

3.
吴志永  刘克新  任晓堂 《中国物理 B》2010,19(9):97806-097806
Photoluminescence (PL) spectra of Si nanocrystals (NCs) prepared by 130 keV Si ions implantation onto SiO2 matrix were investigated as a function of annealing temperature and implanted ion dose. PL spectra consist of two PL peaks, originated from smaller Si NCs due to quantum confinement effect (QCE) and the interface states located at the surface of larger Si NCs. The evolution of number of dangling bonds (DBs) on Si NCs was also investigated. For hydrogen-passivated samples, a monotonic increase in PL peak intensity with the dose of implanted Si ions up to 3×1017 ions /cm2 is observed. The number of DBs on individual Si NC, the interaction between DBs at the surface of neighbouring Si NCs and their effects on the efficiency of PL are discussed.  相似文献   

4.
Here we report on the fabrication of high-density aligned Si nanotip arrays by chemical vapor deposition followed by dry oxidation and an etching treatment. The dry oxidation investigations indicated that Al-catalyst particles located at the tip of Si nanocones enhance their sharpening. This oxidation behavior is quite different from that of Au-catalyzed Si nanowires and is more favorable to form very sharp Si nanotips. Field emission from an individual Si nanotip showed good field-emission characteristic with a high emission current density of 1×104 A/cm2 because of its sharp tip geography, suggesting their potential application for field emitters. Our work provides an effective approach to fabricate high-density Si nanotip arrays, which overcomes some problems in the conventional fabrication approaches, such as high cost, poor controllability, and complicated process.  相似文献   

5.
Raman spectroscopy was used to distinguish the individual members of the two feldspar subgroups. All feldspars were found to exhibit a characteristic, intense line between 500 and 515 cm−1 which is attributed to a mixed Si O Si (or Si O Al) bending/stretching mode. However, discrimination between the related members within each subgroup relies on the change in frequencies and band widths which occur in the external lattice modes and in the Si O stretching region. Spectra were recorded from single crystals and powders and demonstrate that the laser Raman microprobe can provide non-destructive and rapid identification of feldspars on the microscopic scale.  相似文献   

6.
The characteristics of individual pixels in Si Pt: Si matrices were studied by the surface electron-beam induced voltage method. The potential of this method for the nondestructive testing of large-scale (several micrometers in size) recombination-active defects in the working regions of matrix elements was demonstrated.  相似文献   

7.
Monodispersed silicon nanocrystals show novel electrical and optical characteristics of silicon quantum dots, such as single-electron tunneling, ballistic electron transport, visible photoluminescence and high-efficiency electron emission.Single-electron memory effects have been studied using a short-channel MOSFET incorporating Si quantum dots as a floating gate. Surface nitridation of Si nanocrystal memory nodes extends the charge-retention time significantly. Single-electron storage in individual Si dots has been evaluated by Kelvin probe force microscopy.Photoluminescence and electron emission are observed for surface-oxidized silicon nanocrystals. Efficiency of the no-phonon-assisted transition increases with decreasing core Si size. Electron emission efficiency as high as 5% has been achieved for the Si-nanocrystal-based cold electron emitter devices. The non-Maxwellian energy distribution of emitted electrons suggests that the mechanism of electron emission is due to ballistic transport through arrays of surface-oxidized Si nanocrystals. Combined with the ballistic electron emission, the quasi-direct light emission properties can be used for developing Si-based lasers.  相似文献   

8.
The temperature dependence of the magnetization of (Fe/Si) n multilayer films with nanometer layers is investigated. The films are prepared through thermal evaporation under ultrahigh vacuum onto Si(100) and Si(111) single-crystal substrates. It is revealed that the thickness of individual iron layers in (Fe/Si) n multilayer films affects the magnetization and its temperature dependence. The inference is made that this dependence is associated with the formation of a chemical interface at the Fe-Si boundaries. The characteristics of the chemical interface in the (Fe/Si) n films are estimated.  相似文献   

9.
We report structural as well as optical studies on Si/Ge bilayer structures having different individual layer thicknesses. The Raman spectrum of [Ge (5 nm)/Si (5 nm)] bilayer structure shows amorphous nature, while the [Si (5 nm)/Ge (5 nm)] bilayer structure shows a mixed nanocrystalline/amorphous behaviour of the layers. As the thickness of the individual layers increases to 10 nm, the introduction of large number of Si atoms at the interface results in reduction of Ge crystallization as well as higher intensity of interfacial SiGe alloy formation. This may be regarded as a consequence of the island growth induced surface roughening in the later case (i.e. in [Si (10 nm)/Ge (10 nm)] bilayer) as also revealed by corresponding atomic force microscopy (AFM) images. These results are also supported by Photoluminescence (PL) spectra recorded using two different photon energies of 300 and 488 nm along with the optical absorption measurements giving higher values of band gap as compared to their corresponding bulks, revealing the effect of quantum confinement in the deposited layers.  相似文献   

10.
Enhanced Raman scattering (ERS) from bulk Si and surface brilliant cresyl blue (Bcb) molecules was investigated by individual polystyrene (PS) microspheres placed on top of the samples. It is revealed that the Raman signal depends both on the microsphere size and the numerical aperture (NA) of the collection lens, and a maximum signal enhancement of ∼11‐ and 40‐fold for Si and Bcb is observed, respectively, showing strong ERS effect. The different ERS behavior was elucidated by electromagnetic simulations using the finite element method. The present work also provides information on individual dielectric sphere for applications in microscopy, spectroscopic imaging and improvement, etc. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
ZnO micro-prisms are prepared on the p-type and n-type Si substrates, separately. The $I$--$V$ curves analysed by AFM show that the interface junctions between the ZnO micro-prisms and the p-type substrate and between the ZnO micro-prisms and the n-type Si substrate exhibit p--n junction behaviour and ohmic contact behaviour, respectively. The formation of the p--n heterojunction and ohmic contact is ascribed to the intrinsic n-type conduction of ZnO material. Better field emission performance (lower onset voltage and larger emission current) is observed from an individual ZnO micro-prism grown on the n-type Si substrate. It is suggested that the n-Si/n-ZnO interfacial ohmic contact benefits the electron emission; while the p-Si/n-ZnO interface heterojunction deteriorates the electron emission.  相似文献   

12.
We examine individual Si nanowires grown by the vapor-liquid-solid mechanism, using real-time in situ ultra high vacuum transmission electron microscopy. By directly observing Au-catalyzed growth of Si wires from disilane, we show that the growth rate is independent of wire diameter, contrary to the expected behavior. Our measurements show that the unique rate-limiting step here is the irreversible, kinetically limited, dissociative adsorption of disilane directly on the catalyst surface. We also identify a novel dependence of growth rate on wire taper.  相似文献   

13.
The collision statistics of the energy dissipation of Auger and photoelectrons emitted from an amorphized Si(100) surface is studied by measuring the Si 2p photoelectron line as well as the first plasmon loss peak in coincidence with the Si-LVV Auger transition and the associated first plasmon loss. The Si 2p plasmon intensity decreases when measured in coincidence with the Si-LVV peak. If measured in coincidence with the Si-LVV plasmon the decrease is significantly smaller. The results agree quantitatively with calculations accounting for surface, volume, and intrinsic losses as well as elastic scattering in a random medium. In this way one can determine the average emission depth of individual electrons by means of Auger photoelectron coincidence spectroscopy, which therefore constitutes a unique tool to investigate interfaces at the nanoscale level.  相似文献   

14.
We present a new strategy to fabricate a monolayer assembly of Br-terminated Co nanoparticles on functionalized Si surfaces by using chemical covalent bonding and microcontact printing method. Self-assembled monolayers (SAMs) of the Co nanoparticles formed on the hydroxyl-terminated Si surface exhibit two-dimensional island networks with locally ordered arrays via covalent linkage between nanoparticles and surface. On the other hand, SAMs of the nanoparticles on the aminopropyl-terminated Si surface show an individual and random distribution over an entire surface. Furthermore, we have fabricated striped architectures of Co nanoparticles using a combination of microcontact printing and covalent linkage. Microcontact printing of octadecyltrichlorosilane and selective covalent linkage between nanoparticles and functionalized Si surfaces lead to a hybrid nanostructure with selectively assembled nanoparticles stripes on the patterned functionalized Si surfaces. PACS 81.07.Ta; 61.46.+w; 81.16.Dn; 81.16.Be; 68.37.Hk; 82.80.Pv  相似文献   

15.
The homogeneous bulk assumption used in traditional electron probe microanalysis (EPMA) can be applied for thin‐layered systems with individual layers as thick as 50 nm provided the penetration depth of the lowest accelerating voltage exceeds the total film thickness. Analysis of an NIST Ni‐Cr thin film standard on Si using the homogeneous model yielded certified compositions and application of the same model to ultra‐thin Ni‐Si layers on GaAs yielded their expected compositions. In cases where the same element is present in multiple layers or in the substrate as well as the film, the homogeneous assumption in EPMA alone is not sufficient to determine composition. By combining x‐ray reflectivity (XRR) thickness and critical angle data and using an iterative approach, quantitative compositional data in EPMA can be achieved. This technique was utilized to determine the composition of Ni‐Si ultra‐thin films grown on silicon. The Ni‐Si composition determined using this multi‐instrumental technique matched that of Ni‐Si films simultaneously deposited on GaAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The paper reports on surface morphology, structure and microhardness of TiSi–N films formed by cosputtering from two target-facing unbalanced magnetrons, equipped with pure Ti and Si targets, on an unheated substrate rotating in front of both targets. The ratio Si/Ti in the TiSi–N film was achieved by modifying the magnitude of currents in the individual magnetrons and by the addition of nitrogen to the film. The rotation of the substrate has a strong effect on the film deposition rate and its morphology. The deposition rate is 3 times lower than that of the film deposited on a stationary substrate. The surface roughness of a polycrystalline Ti film deposited on the rotating substrate is considerably higher than that on a stationary substrate. On the contrary, the surface of an amorphous Si film is smooth and there is no difference between the roughness of Si films sputtered on stationary and on rotating substrates. The hardness of the film increases with increasing Si content and with the addition of nitrogen to the TiSi film. The Ti(26 at.%)Si(8.5 at.%)N(65 at.%)-film sputtered on an unheated rotating steel substrate, held at a floating potential, exhibited the best result with a hardness of 29 GPa.  相似文献   

17.
Recent scanning tunneling microscopy studies of individual organic molecules on Si(001) reported negative differential resistance (NDR) above a critical applied field, observations explained by a resonant tunneling model proposed prior to the experiments. Here we use both density functional theory and a many-electron GW self-energy approach to quantitatively assess the viability of this mechanism in hybrid junctions with organic molecules on Si. For cyclopentene on p-type Si(001), the frontier energy levels are calculated to be independent of applied electric fields, ruling out the proposed mechanism for NDR. Guidelines for achieving NDR are developed and illustrated with two related molecules, aminocyclopentene and pyrroline.  相似文献   

18.
Auger spectroscopy has been used to investigate the behavior of preferred sputtering on surfaces of homogeneous AlPd, SiPd and AlSi alloy films. These combinations of alloys were chosen for studying the effects of mass and bonding differences on preferred sputtering. Experiments have been carried out using a 1 keV Ar ion beam over a range of alloy compositions. Our results can be summarized as follows: (a) The preferred sputtering of these binary alloys cannot be predicted according to the sputter yields of individual elements, e.g. both Al and Si have been observed to be removed preferentially relative to Pd although pure Pd has a higher sputter yield, (b) In the alloys studied, mass difference appears to dominate over bonding difference in controlling the preferred sputtering behavior since the extent of preferred sputtering of Al and Si relative to Pd is about the same. This observation is interpreted on the basis of the binary alloy sputtering theory formulated by Andersen and Sigmund. (c) Judging from the composition change of the sputtered surface, there is no evidence for formation of compounds with specific compositions as a result of preferred sputtering in the AlPd and SiPd alloys investigated.  相似文献   

19.
Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard universal sd-shell (USD) interaction and the canonical partition function constructed from the calculated eigensolutions. It is shown that the extracted average quadrupole moments show a transitional behaviour as a function of temperature and the infered transitional temperature is shown to vary with angular momentum. The quadrupole deformation of the individual eigenstate is also analysed.  相似文献   

20.
Spatially resolved images of an individual C60F18 fluorofullerene molecule on Si(100) − 2 × 1 surface have been obtained using scanning tunneling microscopy. Scanning tunneling microscopy results and ab initio calculations show that the fluorofullerene molecules interact with the Si(100) − 2 × 1 surface with F atoms pointing down towards the surface. The adsorption energy of a C60F18 molecule on Si(100) − 2 × 1 surface is ∼12.1 eV, which is much higher than the adsorption energy of the same molecule on Si(111) − 7 × 7 surface (6.65 eV). C60F18 molecules are located in the troughs in-between the dimer rows occupying the four-dimer site on Si(100) − 2 × 1 surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号