首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their possible links with Eulerian passive scalar and mixed velocity-passive scalar structure functions. We provide different transformations between these scaling exponents, associated to different transformations linking space and time scales. We obtain four new explicit relations. Experimental data are needed to test these predictions for Lagrangian passive scalar scaling exponents.  相似文献   

2.
The Newtonian theory of spatially unbounded, self-gravitating, pressureless continua in Lagrangian form is reconsidered. Following a review of the pertinent kinematics, we present alternative formulations of the Lagrangian evolution equations and establish conditions for the equivalence of the Lagrangian and Eulerian representations. We then distinguish open models based on Euclidean space R3 from closed models based (without loss of generality) on a flat torus T3. Using a simple averaging method we show that the spatially averaged variables of an inhomogeneous toroidal model form a spatially homogeneous background model and that the averages of open models, if they exist at all, in general do not obey the dynamical laws of homogeneous models. We then specialize to those inhomogeneous toroidal models whose (unique) backgrounds have a Hubble flow, and derive Lagrangian evolution equations which govern the (conformally rescaled) displacement of the inhomogeneous flow with respect to its homogeneous background. Finally, we set up an iteration scheme and prove that the resulting equations have unique solutions at any order for given initial data, while for open models there exist infinitely many different solutions for given data.  相似文献   

3.
We investigate theoretically and numerically the effect of polymer additives on two-dimensional turbulence by means of a viscoelastic model. We provide compelling evidence that, at vanishingly small concentrations, such that the polymers are passively transported, the probability distribution of polymer elongation has a power law tail: Its slope is related to the statistics of finite-time Lyapunov exponents of the flow, in quantitative agreement with theoretical predictions. We show that at finite concentrations and sufficiently large elasticity the polymers react on the flow with manifold consequences: Velocity fluctuations are drastically depleted, as observed in soap film experiments; the velocity statistics becomes strongly intermittent; the distribution of finite-time Lyapunov exponents shifts to lower values, signaling the reduction of Lagrangian chaos.  相似文献   

4.
Turbulence noise     
We show that the large-eddy motions in turbulent fluid flow obey a modified hydrodynamic equation with a stochastic turbulent stress whose distribution is a causal functional of the large-scale velocity field itself. We do so by means of an exact procedure of statistical filtering of the Navier-Stokes equations, which formally solves the closure problem, and we discuss the relation of our analysis with the decimation theory of Kraichnan. We show that the statistical filtering procedure can be formulated using field-theoretic path-integral methods within the Martin-Siggia-Rose (MSR) formalism for classical statistical dynamics. We also establish within the MSR formalism a least-effective-action principle for mean turbulent velocity profiles, which generalizes Onsager's principle of least dissipation. This minimum principle is a consequence of a simple realizability inequality and therefore holds also in any realizable closure. Symanzik's theorem in field theory—which characterizes the static effective action as the minimum expected value of the quantum Hamiltonian over all state vectors with prescribed expectations of fields—is extended to MSR theory with non-Hermitian Hamiltonian. This allows stationary mean velocity profiles and other turbulence statistics to be calculated variationally by a Rayleigh-Ritz procedure. Finally, we develop approximations of the exact Langevin equations for large eddies, e.g., a random-coupling DIA model, which yield new stochastic LES models. These are compared with stochastic subgrid modeling schemes proposed by Rose, Chasnov, Leith, and others, and various applications are discussed.  相似文献   

5.
We define two new models on the square lattice in which each allowed configuration is a superposition of a covering by white dimers and one by black dimers. Each model maps to a solid-on-solid (SOS) model in which the height field is two dimensional. Measuring the stiffness of the SOS fluctuations in the rough phase provides critical exponents of the dimer models. Using this height representation, we have performed Monte Carlo simulations. They confirm that each dimer model has critical correlations and belongs to a new universality class. In the dimer-loop model (which maps to a loop model) one height component is smooth, but has unusual correlated fluctuations; the other height component is rough. In the noncrossing-dimer model the heights are rough, having two different elastic constants; an unusual form of its elastic theory implies anisotropic critical correlations.  相似文献   

6.
The design principles are outlined for two kinds of holographic memory device: the serial store, and the mass store. The latter type is shown to be the most promising and details are given of one such device constructed by the authors and their co-workers.  相似文献   

7.
We consider the family of those states which become asymptotically indistinguishable from the vacuum for observations in far away regions of space. The pure states of this family may be subdivided into superselection sectors labelled by generalized charge quantum numbers. The principle of locality implies that within this family one may define a natural product composition (leading for instance from single particle states ton-particle states). Intrinsically associated with then-fold product of states of one sector there is a unitary representation ofP (n), the permutation group ofn elements, analogous in its role to that arising in wave mechanics from the permutations of the arguments of ann-particle wave function. We show that each sector possesses a statistics parameter which determines the nature of the representation ofP (n) for alln and whose possible values are 0, ±d –1 (d a positive integer). A sector with 0 has a unique charge conjugate (antiparticle states); if =d –1 the states of the sector obey para-Bose statistics of orderd, if =–d –1 they obey para-Fermi statistics of orderd. Some conditions which restrict to ± 1 (ordinary Bose or Fermi statistics) are given.  相似文献   

8.
A variety of rigorous inequalities for critical exponents is proved. Most notable is the low-temperature Josephson inequalitydv +2 2–. Others are 1 1 +v, 1 1 , 1,d 1 + 1/ (for d),dv, 3 + (for d), 4 , and 2m 2m+2 (form 2). The hypotheses vary; all inequalities are true for the spin-1/2 Ising model with nearest-neighbor ferromagnetic pair interactions.NSF Predoctoral Fellow (1976–1979). Research supported in part by NSF Grant PHY 78-23952.  相似文献   

9.
Intermittency effects in high Reynolds number turbulence (Re103–106) are calculated from the Navier-Stokes equation in Fourier-Weierstrass approximation. First, the probability density functions (PDF) of scale resolved turbulent signals is found to be Gaussian for large scales, whereas for smaller scales the PDF changes (in agreement with experiment) to a more and more stretched exponential type. This is due to intermittent small scale fluctuations which are caused by the competition between turbulent energy transfer downscale and viscous energy loss. Second, we calculate the moments of ther-averaged energy dissipation rate r (x) and theirr-scaling exponents (m/3). Our results well agree with experiment and numerical simulations of the full Navier-Stokes equations ((2)=0.29±0.02). We analytically show that the common identification between the (m/3) and the corrections (m) to classical scaling of the velocity structure functions (Kolmogorov's refined similarity hypothesis) is doubtful, because even Gaussian 1 u 1-PDFs (characterizing non intermittent flow) lead to (m/3)0.  相似文献   

10.
The strange attractor for maps of the circle at criticality has been shown to be characterized by a remarkable infinite set of exponents. This characterization by an infinite set of exponents has become known as the multifractal approach. The present paper reformulates the multifractal properties of the strange attractor in a way more akin to critical phenomena. This new approach allows one to study the universal properties of both the critical point and of its vicinity within the same framework, and it allows universal properties to be extracted from experimental data in a straightforward manner. Obtaining Feigenbaum's scaling function from the experimental data is, by contrast, much more difficult. In addition to the infinite set of exponents, universal amplitude ratios here appear naturally. To study the crossover region near criticality, a correlation time, which plays a role analogous to the correlation length in critical phenomena, is introduced. This new approach is based on the introduction of a joint probability distribution for the positive integer moments of the closest-return distances. This joint probability distribution is physically motivated by the large fluctuations of the multifractal moments with respect to the choice of origin. The joint probability distribution has scaling properties analogous to those of the free energy close to a critical point.  相似文献   

11.
It is known that at the critical temperature the Curie-Weiss mean-field model has non-Gaussian fluctuations and that internal fluctuations can be Gaussian. Here we compute the distribution of theq-mode magnetization fluctuations as a function of the temperature, the wave vectorq, and a fading out external field. We obtain new classes of probability distributions generated by this external field as well as new critical behavior in terms of its rate of fading out. We discuss also the susceptibility as the limitq tending to zero.  相似文献   

12.
We simulate the far-from-equilibrium irreversible expansion of a compressed ideal gas in two space dimensions. For this problem the particle trajectories from conventional smooth particle applied mechanics are isomorphic to those from a corresponding molecular dynamics simulation. The smooth-particle weight function used to describe the expanding gas is identical to the pair potential governing the molecular dynamics simulation. These many-body particle simulations are compared with those using a modified smooth-particle algorithm invented by Monaghan, as well as with those based on conventional grid-based Eulerian and Lagrangian methods.  相似文献   

13.
We report measurements of the Lagrangian velocity structure functions of orders 1 through 10 in a high Reynolds number (Taylor microscale Reynolds numbers of up to R(lambda) = 815 ) turbulence experiment. Passive tracer particles are tracked optically in three dimensions and in time, and velocities are calculated from the particle tracks. The structure function anomalous scaling exponents are measured both directly and using extended self-similarity and are found to be more intermittent than their Eulerian counterparts. Classical Kolmogorov inertial range scaling is also found for all structure function orders at times that trend downward as the order increases. The temporal shift of this classical scaling behavior is observed to saturate as the structure function order increases at times shorter than the Kolmogorov time scale.  相似文献   

14.
We generalize our previous work, on the gravitational two-body post-Newtonian Lagrangian with spin and parametrized post-Newtonian parameters and , by addingaccelerationdependent spin terms corresponding to anarbitrary spin supplementary condition. For the purpose of constructing the corresponding Hamiltonian we make use of our recently developedmethod of the double zero. Using this method, we remove the acceleration-dependent spin terms from the Lagrangian and, in the process, create new non-accelerationdependent terms. Use of this new Lagrangian enables us to construct the Hamiltonian corresponding to the arbitrary spin supplementary condition. Energy constants of the motion are also discussed.  相似文献   

15.
We present a two-dimensional, quasistatic model of fracture in disordered brittle materials that contains elements of first-passage percolation, i.e., we use a minimum-energy-consumption criterion for the fracture path. The first-passage model is employed in conjunction with a semi-directed Bernoulli percolation model, for which we calculate critical properties such as the correlation length exponent v sdir and the percolation threshold p c sdir . Among other results, our numerics suggest that v sdir is exactly 3/2, which lies between the corresponding known values in the literature for usual and directed Bernoulli percolation. We also find that the well-known scaling relation between the wandering and energy fluctuation exponents breaks down in the vicinity of the threshold for semi-directed percolation. For a restricted class of materials, we study the dependence of the fracture energy (toughness) on the width of the distribution of the specific fracture energy and find that it is quadratic in the width for small widths for two different random fields, suggesting that this dependence may be universal.  相似文献   

16.
We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler–Poincaré (EP) variational framework of fluid dynamics, for an averaged Lagrangian. We then state the EP Averaging Result—that GLM equations arise from GLM Hamilton’s principles in the EP framework. Next, we derive a new set of approximate small-amplitude GLM equations (gm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the gm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The gm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction (WMFI). The gm EP motion equations for compressible and incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or gm) fluid theory with a Taylor hypothesis closure (THC). Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha closure equations. We use the EP Averaging Result to bridge between the GLM equations and the Euler-alpha closure equations. Hence, combining the small-amplitude approximation with THC yields in new turbulence closure equations for compressible fluids in the EP variational framework.  相似文献   

17.
We analyze the long time behavior of an infinitely extended system of particles in one dimension, evolving according to the Newton laws and interacting via a non-negative superstable Kac potential (x)=(x), (0, 1]. We first prove that the velocity of a particle grows at most linearly in time, with rate of order . We next study the motion of a fast particle interacting with a background of slow particles, and we prove that its velocity remains almost unchanged for a very long time (at least proportional to –1 times the velocity itself). Finally we shortly discuss the so called Vlasov limit, when time and space are scaled by a factor .  相似文献   

18.
Expanding the fields of a laser cavity in a set of orthonormal modes is a standard technique in laser theory. Expansion in a normal mode set is also the basis of the concept of photons. A substantial number of practical lasers do not, however, support any kind of normal or orthogonal cavity modes, and thus, their fields cannot be represented (at least not easily) in terms of normal modes, or photons. This leads to a number of unusual results, including situations in which the lowest-order mode of a cavity can contain substantially more energy than the total energy in the cavity, as well as enhanced quantum spontaneous emission far stronger than the single extra photon level characteristic of an ordinary laser oscillator. We review the theoretical origins of these unusual effects and present experimental confirmation of greatly enhanced Schawlow-Townes fluctuations in an unstable-resonator laser with a Petermann-noise enhancement factor of several hundred times.Dedicated to H. Walther on the occasion on his 60th birthday  相似文献   

19.
We consider dimensional crossover for anO(N) Landau-Ginzburg-Wilson model on ad-dimensional film geometry of thicknessL in the large-N limit. We calculate the full universal crossover scaling forms for the free energy and the equation of state. We compare the results obtained using environmentally friendly renormalization with those found using a direct, non-renormalization-group approach. A set of effective critical exponents are calculated and scaling laws for these exponents are shown to hold exactly, thereby yielding nontrivial relations between the various thermodynamic scaling functions.  相似文献   

20.
We present the results of detailed measurements of the spectrum of short-term (f 0.001-1 Hz) pulsations of the electric field of the near-surface atmosphere under the fair-weather and fog conditions. It is shown that the electric-field pulsations at frequencies 10-2-10-1 Hz have a power-law spectrum under both fair-weather and fog conditions. The spectral index varies in a range of from -1.23 to -3.36 depending on the experimental conditions, but the most probable values of the index fall in a range of from -2.25 to -3.0. The spectra corresponding to long time intervals of about a few hours are more steep. The relation of the spectral characteristics to the formation of aeroelectric structures (AESs) is studied. The distribution obtained for the structured spectra is bimodal, i.e., it exhibits two maxima in the ranges of spectral indices from -2.75 to -3.0 and from -2.25 to -2.5. The nonstructured-spectrum distribution is asymmetric and has a pronounced maximum corresponding to hard spectra with indices from -2.5 to -3.3. The intensity of the electric-field pulsations under fog conditions increases by about an order of magnitude compared to the case of fair-weather conditions. The mechanisms of spectrum formation of electric-field pulsations and their relations to the pulsation spectra of the electric-charge density with allowance for the neutral-gas turbulence and the presence of AESs are analyzed. We point out the key role of the nonlocal relation between the electric-field intensity and the space-charge density under conditions of spatially inhomogeneous turbulence. Model problems of the spectrum of electric-field fluctuations generated by a homogeneous and structured turbulence in the presence of charge-density fluctuations, considered as a passive tracer, are solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号