共查询到20条相似文献,搜索用时 10 毫秒
1.
The two-dimensional forced convection stagnation-point flow and heat transfer of a viscoelastic second grade fluid obliquely impinging on an infinite plane wall is considered as an exact solution of the full partial differential equations. This oblique flow consists of an orthogonal stagnation-point flow to which a shear flow whose vorticity is fixed at infinity is added. The relative importance of these flows is measured by a parameter γ. The viscoelastic problem is reduced to two ordinary differential equations governed by the Weissenberg number We, two parameters α and β, the later being a free parameter β, introduced by Tooke and Blyth [A note on oblique stagnation-point flow, Physics of Fluids 20 (2008) 033101-1–3], and the Prandtl number Pr. The two cases when α=β and α≠β are, respectively, considered. Physically the free parameter may be viewed as altering the structure of the shear flow component by varying the magnitude of the pressure gradient. It is found that the location of the separation point xs of the boundary layer moves continuously from the left to the right of the origin of the axes (xs<0). 相似文献
2.
Steady two-dimensional stagnation-point flow of an electrically conducting power-law fluid over a stretching surface is investigated when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. We have discussed the uniqueness of the solution except when the ratio of free stream velocity and stretching velocity is equal to 1. The effect of magnetic field on the flow characteristic is explored numerically and it is concluded that the velocity at a point decreases/increases with increase in the magnetic field when the free stream velocity is less/greater than the stretching velocity. It is further observed that for a given value of magnetic parameter M, the dimensionless shear stress coefficient |F″(0)| increases with increase in power-law index n when the value of the ratio of free stream velocity and stretching velocity is close to 1 but not equal to 1. But when the value of this ratio further differs from 1, the variation of |F″(0)| with n is non-monotonic. 相似文献
3.
An analysis is made of the steady two-dimensional stagnation-point flow of an incompressible viscoelastic fluid over a flat deformable surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. It is shown that for a viscoelastic fluid of short memory (obeying Walters’ B′ model), a boundary layer is formed when the stretching velocity of the surface is less than the inviscid free-stream velocity and velocity at a point increases with increase in the elasticity of the fluid. On the other hand, an inverted boundary layer is formed when the surface stretching velocity exceeds the velocity of the free stream and the velocity decreases with increase in the elasticity of the fluid. A novel result of the analysis is that the flow near the stretching surface is that corresponding to an inviscid stagnation-point flow when the surface stretching velocity is equal to the velocity of the free stream. Temperature distribution in the boundary layer is found when the surface is held at constant temperature and surface heat flux is determined. It is found that temperature at a point decreases with increase in the elasticity of the fluid. 相似文献
4.
Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet 总被引:1,自引:0,他引:1
An analysis is made for the steady mixed convection boundary layer flow near the two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a very efficient numerical scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. It is observed that, for assisting flow, both the skin friction coefficient and the local Nusselt number increase as the buoyancy parameter increases, while only the local Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the local Nusselt number decrease as the buoyancy parameter increases, but both increase as Pr increases. Comparison with known results is excellent. 相似文献
5.
6.
An analysis is carried out to study the unsteady magnetohydrodynamic (MHD) two-dimensional boundary layer flow of a second grade viscoelastic fluid over an oscillatory stretching surface. The flow is induced due to an infinite elastic sheet which is stretched back and forth in its own plane. For the investigated problem, the governing equations are reduced to a non-linear partial differential equation by means of similarity transformations. This equation is solved both by a newly developed analytic technique, namely homotopy analysis method (HAM) and by a numerical method employing the finite difference scheme, in which a coordinate transformation is employed to transform the semi-infinite physical space to a bounded computational domain. The results obtained by means of both methods are then compared and show an excellent agreement. The effects of various parameters like visco-elastic parameter, the Hartman number and the relative frequency amplitude of the oscillatory sheet to the stretching rate on the velocity field are graphically illustrated and analysed. The values of wall shear stress for these parameters are also tabulated and discussed. 相似文献
7.
Soraya Aïboud 《International Journal of Non》2010,45(5):482-489
This paper presents the application of the second law analysis of thermodynamics to viscoelastic magnetohydrodynamic flow over a stretching surface. The velocity and temperature profiles are obtained analytically using the Kummer's functions and used to compute the entropy generation number. The effects of the magnetic parameter, the Prandtl number, the heat source/heat sink parameter and the surface temperature parameter on velocity and temperature profiles are presented. The influences of the same parameters, the Hartmann number, the dimensionless group parameter and the Reynolds number on the entropy generation are also discussed. 相似文献
8.
Rafael Cortell 《International Journal of Non》2006,41(1):78-85
This paper presents a study of the flow and heat transfer of an incompressible homogeneous second grade fluid past a stretching sheet. The governing partial differential equations are converted into ordinary differential equations by a similarity transformation. The effects of viscous dissipation and work due to deformation are considered in the energy equation and the variations of dimensionless surface temperature and dimensionless surface temperature gradient with various parameters are graphed and tabulated. Two cases are studied, namely, (i) the sheet with constant surface temperature (CST case) and (ii) the sheet with prescribed surface temperature (PST case). 相似文献
9.
The induced unsteady flow due to a stretching surface in a rotating fluid, where the unsteadiness is caused by the suddenly stretched surface is studied in this paper. After a similarity transformation, the unsteady Navier–Stokes equations have been solved numerically using the Keller-box method. Also, the perturbation solution for small times as well as the asymptotic solution for large times, when the flow becomes steady, has been obtained. It is found that there is a smooth transition from the small time solution to the large time or steady state solution. 相似文献
10.
Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet 总被引:1,自引:1,他引:0
The mixed convection two-dimensional boundary layer flow of a micropolar fluid near the stagnation point on a stretching vertical
sheet is investigated. The stretching velocity and the surface temperature are assumed to vary linearly with the distance
from the stagnation point. The transformed ordinary differential equations are solved numerically for some values of the parameters
involved using a finite-difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics
are analyzed and discussed. Both assisting and opposing flows are considered. Results are presented in terms of the skin friction
coefficient and the local Nusselt number with selections of velocity, microrotation and temperature profiles. Dual solutions
are found to exist for the opposing flow. 相似文献
11.
12.
The present work investigates the micropolar fluid flow due to a permeable stretching sheet and the resulting heat transfer. Unlike the existing numerical works on the flow phenomenon in the literature, the prime interest here is to analytically work out shape of the solutions and identify whether they are unique. Indeed, unique solutions are detected and presented in the exact formulas for the associated boundary layer equations. Temperature field influenced by the microrotation is also mathematically resolved in the cases of constant wall temperature, constant heat flux and Newtonian heating. To discover the salient physical features of many mechanisms acting on the considered problem, it is adequate to have the analytical velocity and temperature fields and also closed-form skin friction/couple stress/heat transfer coefficients, all as given in the current paper. For instance, the practically significant rate of heat transfer is represented by a single formula valid for all three temperature cases. 相似文献
13.
An analysis is carried out to study the momentum, mass and heat transfer characteristics on the flow of visco-elastic fluid (Walter's liquid-B model) past a stretching sheet in the presence of a transverse magnetic field.In heat transfer, two cases are considered:
- 1.
- The sheet with prescribed surface temperature (PST case); and
- 2.
- The sheet with prescribed wall heat flux (PHF case).
14.
The solution to the unsteady mixed convection boundary layer flow and heat transfer problem due to a stretching vertical surface
is presented in this paper. The unsteadiness in the flow and temperature fields is caused by the time-dependent of the stretching
velocity and the surface temperature. The governing partial differential equations with three independent variables are first
transformed into ordinary differential equations, before they are solved numerically by a finite-difference scheme. The effects
of the unsteadiness parameter, buoyancy parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly
examined. Both assisting and opposing buoyant flows are considered. It is observed that for assisting flow, the solutions
exist for all values of buoyancy parameter, whereas for opposing flow, they exist only if the magnitude of the buoyancy parameter
is small. Comparison with known results for steady-state flow is excellent. 相似文献
15.
Chien-Hsin Chen 《International Journal of Non》2009,44(6):596-603
The problem of magneto-hydrodynamic mixed convective flow and heat transfer of an electrically conducting, power-law fluid past a stretching surface in the presence of heat generation/absorption and thermal radiation has been analyzed. After transforming the governing equations with suitable dimensionless variables, numerical solutions are generated by an implicit finite-difference technique for the non-similar, coupled flow. The solution is found to be dependent on the governing parameters including the power-law fluid index, the magnetic field parameter, the modified Richardson number, the radiation parameter, the heat generation parameter, and the generalized Prandtl number. To reveal the tendency of the solutions, typical results for the velocity and temperature profiles, the skin-friction coefficient, and the local Nusselt number are presented for different values of these controlling parameters. 相似文献
16.
B.J. Gireesha G.K. Ramesh M. Subhas Abel C.S. Bagewadi 《International Journal of Multiphase Flow》2011
The present paper deals with the analysis of boundary layer flow and heat transfer of a dusty fluid over a stretching sheet with the effect of non-uniform heat source/sink. Here we consider two types of heating processes namely (i) prescribed surface temperature and (ii) prescribed surface heat flux. The momentum and thermal boundary layer equations of motion are solved numerically using Runge Kutta Fehlberg fourth–fifth order method (RKF45 Method). The effects of fluid particle interaction parameter, Eckert number, Prandtl number, Number of dust particle and non-uniform heat generation/absorption parameter on temperature distribution are analyzed and also the effect of wall temperature gradient function and wall temperature function are tabulated and discussed. 相似文献
17.
The steady two-dimensional stagnation point flow of an incompressible micropolar fluid over a stretching sheet when the sheet is stretched in its own plane with a velocity proportional to the distance from the stagnation point, has been studied in this paper. The resulting equations of non-linear ordinary coupled differential equations are solved numerically using the Keller-box method. The results obtained for velocity, microrotation and skin friction are shown in tables and graphs. Comparison with the recent results of Mahapatra and Gupta {Heat Mass Transfer 38 (2002) 517} for the corresponding problem of a viscous fluid (K=0) has been done and it has been shown that the results are in excellent agreement. 相似文献
18.
An analysis is carried out to study the flow and heat transfer characteristics in a second grade fluid over a stretching sheet with prescribed surface temperature including the effects of frictional heating, internal heat generation or absorption, and work due to deformation. In order to solve the fourth-order non-linear differential equation, associated with the flow problem, a fourth boundary condition is augmented and a proper sign for the normal stress modulus is used. It is observed that for a physical flow problem the solution is unique. The solutions for the temperature and the heat transfer characteristics are obtained numerically and presented by a table and graphs. Furthermore, it is shown that the heat flow is always from the stretching sheet to the fluid. 相似文献
19.
Youssef Z. Boutros Mina B. Abd-el-Malek Nagwa A. Badran Hossam S. Hassan 《Meccanica》2006,41(6):681-691
The boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at
a heated stretching sheet placed in a porous medium are considered. We apply Lie-group method for determining symmetry reductions
of partial differential equations. Lie-group method starts out with a general infinitesimal group of transformations under
which the given partial differential equations are invariant. The determining equations are a set of linear differential equations,
the solution of which gives the transformation function or the infinitesimals of the dependent and independent variables.
After the group has been determined, a solution to the given partial differential equations may be found from the invariant
surface condition such that its solution leads to similarity variables that reduce the number of independent variables of
the system. The effect of the velocity parameter λ, which is the ratio of the external free stream velocity to the stretching
surface velocity, permeability parameter of the porous medium k
1, and Prandtl number Pr on the horizontal and transverse velocities, temperature profiles, surface heat flux and the wall
shear stress, has been studied. 相似文献
20.
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer, which is also an exact solution to the unsteady Navier-Stokes(NS) equations. The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions. The wall temperature and heat flux have power dependence on both time and spatial distance. The solution domain, the velocity distribution, the flow field, ... 相似文献