首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of high electric field in capillary zone electrophoresis (CZE) was evaluated for the study of the thermally induced unfolding of Bungarus fasciatus acetylcholinesterase. This monomer enzyme is characterised by two interdependent uncommon structural features, the asymmetrical distribution of charged residues and a relatively low thermal denaturation temperature. Both traits were presumed to interfere in the thermal unfolding of this enzyme as investigated by CZE. This paper analyses the effect of high electric field on the behaviour of the enzyme native state. It is shown that increasing the applied field causes denaturation-like transition of the enzyme at a current power which does not induce excessive Joule heating in the capillary. The susceptibility to electric field of proteins like cholinesterases, with charge distribution anisotropy, large permanent dipole moment and notable molecular flexibility associated with moderate thermal stability, was subsequently discussed.  相似文献   

2.
Xuan X  Li D 《Electrophoresis》2005,26(1):166-175
It is widely accepted that Joule heating effects yield radial temperature gradients in capillary zone electrophoresis (CZE). The resultant parabolic profile of electrophoretic velocity of analyte molecules is believed to increase the band-broadening via Taylor-Aris dispersion. This typically insignificant contribution, however, cannot explain the decrease in separation efficiency at high electric fields. We show that the additional band-broadening due to axial temperature gradients may provide the answer. These axial temperature variations result from the change of heat transfer condition along the capillary, which is often present in CZE with thermostating. In this case, the electric field becomes nonuniform due to the temperature dependence of fluid conductivity, and hence the induced pressure gradient is brought about to meet the mass continuity. This modification of the electroosmotic flow pattern can cause significant band-broadening. An analytical model is developed to predict the band-broadening in CZE with axial temperature gradients in terms of the theoretical plate height. We find that the resultant thermal plate height can be very high and even comparable to that due to molecular diffusion. This thermal plate height is much higher than that due to radial temperature gradients alone. The analytical model explains successfully the phenomena observed in previous experiments.  相似文献   

3.
A new way of regulation of electroosmotic flow (EOF) in capillary zone electrophoresis (CZE) by external electric field has been developed. A set of three high-voltage power supplies is used to form a radial electric field across the capillary wall. One power supply is applied in the usual way as a driving force of CZE and EOF to the ends of the inner capillary compartment dipped into the electrode vessels and filled with background electrolyte. Two power supplies are connected to the ends of the outer low-conductivity coating of the capillary which is formed by the dispersion of copolymer of aniline and p-phenylenediamine in polystyrene matrix. The difference between electric potentials on the outer capillary surface and inside the capillary determines the voltage of radial electric field across the capillary wall and affects the electrokinetic potential at the solid-liquid interface inside the capillary. The effect of magnitude and polarity of external radial electric field on the flow rate of EOF, on the migration times of charged analytes and on the separation efficiency and resolution of CZE separations of synthetic oligopeptides, diglycine, triglycine and octapeptide fragments of human insulin was evaluated. Through the EOF control by external electric field the dynamic effective length of the capillary was obtained and the speed of analysis and resolution of CZE separations of peptide analytes could be optimized.  相似文献   

4.
To gain insight into the mechanisms of size-dependent separation of microparticles in capillary zone electrophoresis (CZE), sulfated polystyrene latex microspheres of 139, 189, 268, and 381 nm radius were subjected to CZE in Tris-borate buffers of various ionic strengths ranging from 0.0003 to 0.005, at electric field strengths of 100-500 V cm(-1). Size-dependent electrophoretic migration of polystyrene particles in CZE was shown to be an explicit function of kappaR, where kappa(-1) and rare the thickness of electric double layer (which can be derived from the ionic strength of the buffer) and particle radius, respectively. Particle mobility depends on kappaR in a manner consistent with that expected from the Overbeek-Booth electrokinetic theory, though a charged hairy layer on the surface of polystyrene latex particles complicates the quantitative prediction and optimization of size-dependent separation of such particles in CZE. However, the Overbeek-Booth theory remains a useful general guide for size-dependent separation of microparticles in CZE. In accordance with it, it could be shown that, for a given pair of polystyrene particles of different sizes, there exists an ionic strength which provides the optimal separation selectivity. Peak spreading was promoted by both an increasing electric field strength and a decreasing ionic strength. When the capillary is efficiently thermostated, the electrophoretic heterogeneity of polystyrene microspheres appears to be the major contributor to peak spreading. Yet, at both elevated electric field strengths (500 V/cm) and the highest ionic strength used (0.005), thermal effects in a capillary appear to contribute significantly to peak spreading or can even dominate it.  相似文献   

5.
The thermal denaturation process of a model protein, bovine beta-lactoglobulin, was analyzed using capillary zone electrophoresis (CZE). For this purpose, a commercial CE apparatus was improved, allowing efficient control and accurate measurement of the temperature up to 95 degrees C. Under various pH conditions, transition temperature (Tm), enthalpy change (delta H) and entropy change (delta S) associated with the thermal denaturation were determined. Moreover, the technique is unique in its ability to estimate the heat capacity change (delta Cp). This work shows that CZE, performed even when electroosmotic flow occurs, is an innovative approach for determining the stability curves of proteins. Accordingly, CZE is a powerful tool to study protein unfolding/folding quickly and with minimal sample requirements.  相似文献   

6.
R-phycoerythrin (PHYCO, Mr 240 000), glucose-6-phosphate dehydrogenase (GPD, Mr 104 000) and two charge isomers of recombinant green fluorescent protein (GFP-1 and GFP-2, Mr 27 000) were subjected to capillary zone electrophoresis (CZE) in capillaries of 50, 100 and 150 microm inner diameter at various sample concentrations, electric field strengths, and lengths of the initial zone with the purpose of testing the hypothesis that protein - capillary wall interactions rather than thermal effects are predominantly responsible for the peak spreading of proteins in CZE. The efficiency of CZE was expressed in terms of the number of theoretical plates, N, or the plate height corrected by subtracting the contribution from initial zone length, H'. The latter has the advantage of solely reflecting contributions to the separation efficiency arising from intracolumn peak spreading in capillaries of different diameters. The separation efficiency measured varied widely, by two orders of magnitude, for these proteins under identical conditions, with GPD exhibiting the highest and PHYCO the lowest values of N. H' was found to be independent of sample concentrations within the concentration ranges studied, 1-100 microg/mL for PHYCO and 100-1000 microg/mL for GPD, while exhibiting a decrease with sample concentration for GFP, especially in 150 microm diameter capillaries, within the concentration range 1-100 microg/mL. H'was also found to be independent of electric field strength up to 300-400 V/cm for PHYCO and GFP. In all experiments, the CZE of proteins in 100 microm diameter capillaries provided a higher or, at least, equal efficiency, compared to that in 50 or 150 microm diameter capillaries. It may be concluded that the protein - capillary wall interactions and protein microheterogeneity are the dominant sources of peak spreading and their specific combinations are thought to be responsible for the wide variation in separation efficiency between proteins in CZE observed under identical conditions.  相似文献   

7.
Rochu D  Masson P 《Electrophoresis》2002,23(2):189-202
This review summarizes the work of our laboratory to explore the use of capillary zone electrophoretic (CZE) methods for the investigation of protein conformational stability. Early CZE works on protein denaturation as well as fundamental and theoretical considerations are discussed. Instrumental aspects of the CE-based approach including general and particular CE requirements are documented. Several aspects dealing with estimation of stability of enzymes (cholinesterases and organophosphate-hydrolyzing enzymes) interacting with organophosphates profusely illustrate the multiple advantages of CZE. The discrimination of parameters controlling the "good compromise" stability/plasticity for allowing functional efficiency of these enzymes is exemplified. Thermal stability, susceptibility to high electric field, alteration of stability by bound ligands and the role of associated cations in metalloenzymes have been successfully investigated.  相似文献   

8.
Righetti PG  Verzola B 《Electrophoresis》2001,22(12):2359-2374
A series of techniques for monitoring protein folding/unfolding/misfolding equilibria are here assessed and compared with capillary zone electrophoresis (CZE). They include spectroscopic techniques, such as circular dichroism, intrinsic fluorescence, nuclear magnetic resonance, Fourier transform infrared and Raman spectroscopy, small-angle X-ray scattering, as well as techniques based on biological assays, such as limited proteolysis and immunochemical analysis of different conformational states. Some unusual probes, such as mass spectrometry for probing unfolding transitions, are also discussed. Size-exclusion chromatography is also evaluated in view of the fact that this technique, like all electrophoretic techniques, and unlike spectroscopic probes, which can only see an average signal in mixed populations, can indeed physically separate folded vs. unfolded macromolecules, especially in the case of slow equilibria. Particular emphasis is devoted to electrophoretic techniques, such as gel-slab electrophoresis in transverse urea or thermal gradients, and CZE. In the latter case, a number of applications are shown, demonstrating the excellent correlation of CZE with more traditional probes, such as intrinsic fluorescence monitoring. It is additionally shown that CZE can be used for measuring the deltaG degrees of unfolding over the pH scale, in good agreement with theoretical calculations on the electrostatic free energy of folding vs. pH, as calculated with a linearized Poisson-Boltzmann equation. Finally, it is demonstrated that CZE can probe also aggregate formation in the presence of helix-inducing agents, such as trifluorethanol.  相似文献   

9.
The behavior of charged species along concentration boundaries in capillary zone electrophoresis (CZE) that was first described in detail by Everaerts et al. in 1979 assured the possibility of concentrating charged solutes inside the capillary. The concentration effect is based on the sudden change in analyte electrophoretic velocity brought about by the difference in the magnitude of the electric field. Furthermore, this on-line method could be the needed solution to the problem of low concentration sensitivity in CZE. Sample stacking, which is now its well known name, has then found valuable use in applying CZE in many fields, especially after the in-depth studies performed in the early 90s by Chien and Burgi. This article reviews the theory and methodological developments of sample stacking developed for charged analytes in CZE and also in electrokinetic chromatography. A table conveying the reported applications especially in the biomedical and environmental fields is given. On top of this, other on-line concentration methods for charged species, namely, sample self-stacking, acetonitrile stacking, sweeping, cation selective exhaustive injection-sweeping, and use of a pH junction, are briefly discussed.  相似文献   

10.
Enzymes immobilized on the inner surface of an electrophoretic capillary were used to increase sensitivity and resolution in capillary zone electrophoresis (CZE). Sensitivity is enhanced by inserting a piece of capillary containing the immobilized enzyme into the main capillary, located before the detector, in order to transform the analyte into a product with a higher absorptivity. This approach was used to determine ethanol. In order to improve resolution, capillary pieces containing immobilized enzymes were inserted at various strategic positions along the electrophoretic capillary. On reaching the enzyme, the analyte was converted into a product with a high electrophoretic mobility, the migration time for which was a function of the position of the enzyme reactor. This approach was applied to the separation and determination of acetaldehyde and pyruvate. Finally, the proposed method was validated with the determination of ethanol, acetaldehyde, and pyruvate in beer and wine samples.  相似文献   

11.
The aim of the study was to develop a new capillary zone electrophoresis (CZE) method for determination of enzymatic activity of hyaluronidase. The method permits monitoring of the process of hyaluronic acid digestion by hyaluronidase. Studies were performed using CZE instrument equipped with capillary of 64.5 cm total length, 56 cm effective length and internal diameter 75 µm. Separation was performed in the phosphate buffer (pH 8.10) in the electric field of 20 kV, λ = 220 nm. The procedure was based on mixing a known quantity of hyaluronic acid and an aliquot of hyaluronidase solution, followed by obtaining CZE profiles after a known period of incubation (0.5 h). The activity of hyaluronidase was calculated using multiple regression analysis in which sizes of the peaks of the main degradation products were used. The newly developed method was fully validated and it is appropriate to evaluate the activity of hyaluronidase originating from different sources with high precision and accuracy. t‐Tests showed that there were no significant differences between results obtained using turbidimetric, viscosimetric and the new CZE method. The developed method is characterized by a short duration of analysis, low volume of analyzed sample, small amount of buffers used and low cost of analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Two carrier-free electrophoretic separation methods, capillary zone electrophoresis (CZE) and continuous free-flow zone electrophoresis (FFZE), have been applied to both microanalysis at the nanogram level and preparative fractionation, with a throughput of 30 mg/h, of synthetic growth hormone releasing peptide (GHRP). A crude product of GHRP, a hexapeptide with the sequence His-D-Trp-Ala-Trp-D-Phe-Lys-NH2, synthesized by the solid phase methodology, was desalted and analyzed by CZE. Based on the results of analytical CZE the separation was converted into a preparative purification procedure by continuous FFZE, employing the same separation medium (0.5 mol/L acetic acid, pH 2.6). The purifity of peptide fractions obtained by FFZE was reevaluated by CZE. The combination of these two techniques proved to be a valuable tool for both peptide analysis and peptide purification. A close correlation of CZE and FFZE, resulting from the fact that both methods are based on the same separation principle (zone electrophoresis) and that both are performed in a free solution of the same composition, was confirmed. However, when transforming data from CZE to FFZE, the different electroosmotic flow, temperature and electric field intensity in the capillary and in the flow-through cell, respectively, have to be taken into account and corresponding corrections have to be made.  相似文献   

13.
Smith RD  Udseth HR  Loo JA  Wright BW  Ross GA 《Talanta》1989,36(1-2):161-169
Capillary-electrophoresis methods are attracting interest owing to the ability to yield rapid high-resolution separations, but many aspects, such as sample injection, separation conditions and detection, need further development. Effects related to sample injection and buffer composition have been investigated. Automated methods for electromigration injection of nl-size sample volumes are shown to give a precision of approximately +/-1%. Problems encountered with manual injection procedures have been examined by an electric field reversal technique. The effect of buffer pH on capillary zone-electrophoresis (CZE) separations can be attributed to changes in electro-osmotic flow velocities and to changes in the isoelectric points of analytes. The interfacing of capillary electrophoresis with mass spectrometry is described and demonstrated for a range of conditions, with a quaternary phosphonium salt mixture. Separations obtained by CZE and capillary isotachophoresis are compared and the relative advantages of the two techniques discussed.  相似文献   

14.
A new fraction collection system for capillary zone electrophoresis (CZE) and capillary isolelectric focusing (CIEF) is described. Exact timing of the collector steps was based on determining the velocity of each individual zone measured between two detection points close to the end of the capillary. Determination of the zone velocity shortly before collection overcame the need for constant analyte velocity throughout the column. Consequently, sample stacking in CZE with large injection volumes as well as zone focusing in CIEF could be utilized with high collection accuracy. Capillaries of 200 microm inner diameter (ID) were employed in CZE and 100 microm ID in CIEF for the micropreparative mode. A sheath flow fraction collector was used to maintain permanent electric current during the collection. The bulk liquid flow due to siphoning, as well as the backflow arising from the sheath flow droplet pressure, were suppressed by closing the separation system at the inlet with a semipermeable membrane. In the CZE mode, the performance of the fraction collector is demonstrated by isolation of individual peaks from a fluorescently derivatized oligosaccharide ladder. In the CIEF mode, collection of several proteins from a mixture of standards is shown, followed by subsequent analysis of each protein fraction by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).  相似文献   

15.
Sample injection in microchip-based capillary zone electrophoresis (CZE) frequently rely on the use of electric fields which can introduce differences in the injected volume for the various analytes depending on their electrophoretic mobilities and molecular diffusivities. While such injection biases may be minimized by employing hydrodynamic flows during the injection process, this approach typically requires excellent dynamic control over the pressure gradients applied within a microfluidic network. The current article describes a microchip device that offers this needed control by generating pressure gradients on-chip via electrokinetic means to minimize the dead volume in the system. In order to realize the desired pressure-generation capability, an electric field was applied across two channel segments of different depths to produce a mismatch in the electroosmotic flow rate at their junction. The resulting pressure-driven flow was then utilized to introduce sample zones into a CZE channel with minimal injection bias. The reported injection strategy allowed the introduction of narrow sample plugs with spatial standard deviations down to about 45 μm. This injection technique was later integrated to a capillary zone electrophoresis process for analyzing amino acid samples yielding separation resolutions of about 4–6 for the analyte peaks in a 3 cm long analysis channel.  相似文献   

16.
Capillary electrochromatography (CEC) is a liquid phase analytical separation technique that is generally carried out with packed capillary columns by electroosmotically driven mobile phase at high electric field strength. The analytes are separated by virtue of the differences in their distribution between the mobile and stationary phases and, if charged in their electrophoretic mobilities as well. It is thus considered a hybrid of liquid chromatography and capillary electrophoresis and is expected to combine the high peak efficiency of capillary zone electrophoresis (CZE) with the versatility and loading capacity of HPLC. This review explores the potential use of on-line mass spectrometric detection for CEC. It discusses key design issues that focus on the physical and electrical arrangement of the CEC column with respect to the electrospray orifice inlet. The salient features of the sheathless, sheath flow and liquid junction interfaces that are frequently employed while coupling a CEC column to an electrospray ionization mass spectrometry system are also highlighted. Possible configurations of the CEC column outlet that would obviate the need for pressurizing the capillary column are also presented. While coupling CEC with MS both the nature of the interface and the configuration of the column outlet will determine the optimal arrangement. The review also discusses bandspreading that occurs when a connecting tube is employed to transfer mobile phase from the column outlet to the atmospheric region of the electrospray source with a concomitant loss in sensitivity. Selected examples that highlight the potential of this technique for a wide range of applications are also presented.  相似文献   

17.
The solution chemistry conditions necessary for optimum analysis of peptides by capillary zone electrophoresis (CZE)/electrospray ionization mass spectrometry and CZE electrospray ionization tandem mass spectrometry have been studied. To maximize the signal-to-noise ratio of the spectra it was found necessary to use acidic CZE buffers of low ionic strength. This not only increases the total ion current, but it also serves to fully protonate the peptides, minimizing the distribution of ion current across the ensemble of possible charge states. The use of acidic buffers protonates the peptides, which is advantageous for mass spectrometry and tandem mass spectrometry analysis, but is problematic with CZE when bare fused silica CZE columns are used. These conditions produce positively charged peptides, and negatively charged silanol moieties on the column wall, inducing adsorption of the positively charged peptides, thus causing zone broadening and a loss in separation efficiency. This problem was circumvented by the preparation of chemically modified CZE columns, which, when used with acidic CZE buffers, will have a positively charged inner column wall. The electrostatic repulsion between the positively charged peptides and the positively charged CZE column wall minimizes adsorption problems and facilitates high efficiency separations. Full-scan mass spectra were acquired from injections of as little as 160 fmols of test peptides, with CZE separation efficiencies of up to 250,000 theoretical plates.  相似文献   

18.
Cellobiohydrolase (CBH) is an important enzyme for the conversion of lignocellulosic biomass to ethanol. This work separated the glycoforms of CBH possessing different numbers of neutral mannoses using capillary zone electrophoresis (CZE) in a 50 mM, pH 7.5 phosphate buffer. The method analysed CBH in an intact form using a polyacrylamide coated fused silica capillary without requiring additives or labelling of the enzyme. The migration time of the major peak was found to be 21.6±0.1 min (n=3) and the approach is suitable for testing of batch-to-batch consistency of CBH. Ease-of-use, automation and speed are the other benefits due to which the use of CZE for analysing glycoforms of CBH was concluded to be ideal.  相似文献   

19.
A capillary zone electrophoresis (CZE) method was developed for the rapid analysis of charge heterogeneity of immunoglobulin G (IgG) monoclonal antibodies (mAbs). The separation was carried out in a short, dynamically coated fused-silica capillary. A number of separation parameters were investigated and optimized, including pH, concentration of the separation buffer (ε-amino caproic acid), concentration of the triethylenetetramine (TETA) dynamic coating, the capillary internal diameter and the field strength used for the separation. The effects of between-run flushing of the capillary and the data acquisition rate were also evaluated. Under the optimized conditions, a fast (<5 min), selective and reproducible separation of mAb charge variants was achieved under a very high electric field strength (1000 V/cm). This method also requires only a short conditioning of the capillary, with between-run conditioning completed within 2 min. The method was evaluated for specificity, sensitivity, linearity, accuracy and precision. The same separation conditions were applied to the rapid separation (2-5 min) of charge variants of multiple monoclonal antibodies with pI in the range of 7.0-9.5. Compared with other existing methods for charge variants analysis, this method has several advantages including a short run time, rapid capillary conditioning and simple sample preparation.  相似文献   

20.
An interlaboratory pilot study was performed to determine the reproducibility of mobility parameters in capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC). The study was performed by an intended small number of laboratories (three) that used different brands of instruments (two). The effective mobility was corrected using standards by a method that was recently introduced to obtain a more reproducible migration parameter. A test set of 20 acidic test compounds and 5 reference compounds were analyzed during five days in each laboratory using CZE and MEKC. Buffers used consisted of 90 mM borate set at pH 8.4 (CZE) and 20 mM phosphate, 50 mM sodium dodecyl sulfate set at pH 7.5 (MEKC). Analyses were carried out using fused-silica capillaries at an electric field strength of either 52.6 kV/m or 37.5 kV/m. The interlaboratory reproducibility (mean RSD) of the effective mobility was 3.0% for CZE and 6.7% for MEKC. After applying the correction method, these values became 3.0% for CZE and 3.3% for MEKC, which is adequate for systematic toxicological analysis (STA) applications. A significant improvement of reproducibility for the calculated corrected effective mobility mu(eff)c was observed when variations are high. Therefore, it is recommended to use the correction method in interlaboratory situations, especially when instruments and capillaries from different manufacturers are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号