首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
红外光谱测量时,水汽吸收潜带常掩蔽重要的样品光谱信息.克服水汽干扰的方法有真空技术、干燥气体吹扫技术、样品穿梭技术、光谱差减技术和水汽补偿湿度滴定方法等.该文重点评述了新近发展的用于除去水汽噪音的湿度滴定法.不同于以往方法,该方法允许水汽带在光谱采集前期出现,并根据水汽吸收带的大小和正负方向,适时向光谱仪样品室通入干燥...  相似文献   

2.
Few studies were conducted on oxygenated volatile organic compounds (OVOC) because of problems encountered during the sampling/analyzing steps induced by water in sampled air. Consequently, there is a lack of knowledge of their spatial and temporal trends and their origins in ambient air. In this study, an analyzer consisted of a thermal desorber (TD) interfaced with a gas chromatograph (GC) and a flame ionization detector (FID) was developed for online measurements of 18 OVOC in ambient air including 4 alcohols, 6 aldehydes, 3 ketones, 3 ethers, 2 esters and 4 nitriles. The main difficulty was to overcome the humidity effect without loss of compounds. Water amount in the sampled air was reduced by the trap composition (two hydrophobic graphitized carbons—Carbopack B:Carbopack X), the trap temperature (held at 12.5 °C), by diluting (50:50) the sample with dry air before the preconcentration step and a trap purge with helium. Humidity management allowed the use of a polar CP-Lowox column in order to separate the polar compounds from the hydrocarbon/aromatic matrix. The safe sampling volume for the dual-sorbent trap 75 mg Carbopack X:5 mg Carbopack B was found to 405 mL for ethanol by analyzing a standard mixture at a relative humidity of 80%. Detection limits ranging from 10 ppt for ETBE to 90 ppt for ethanol were obtained for 18 compounds for a sampling volume of 405 mL. Good repeatabilities were obtained at two levels of concentration (relative standard deviation <5%). The calibration (ranging from 0.5 to 10 ppb) was set up at three different levels of relative humidity to test the humidity effect on the response coefficients. Results showed that the response coefficients of all compounds were less affected by humidity except for those of ethanol and acetonitrile (decrease respectively of 30% and 20%). The target compounds analysis shows good reproducibility with response coefficient variability of less then 10% of the mean initial value of calibration for all the compounds. Hourly ambient air measurements were conducted in an urban site in order to test this method. On the basis of these measurements, ethanol, acetone and acetaldehyde have shown the highest concentration levels with an average of 2.10, 1.75 and 1.37 ppb respectively. The daily evolution of some OVOC, namely ethanol and acetaldehyde, was attributed to emissions from motor vehicles while acetone has a different temporal evolution that can be probably associated with remote sources.  相似文献   

3.
A procedure for coating in situ silica gel in prepacked cartridges with 2,4-dinitrophenylhydrazine (DNPH) acidified with hydrochloric acid is described. The coated cartridge was compared with a validated DNPH impinger method for sampling organic carbonyl compounds (aldehydes and ketones) in diluted automotive exhaust emissions and in ambient air for subsequent analysis of the DNPH derivatives by high performance liquid chromatography. Qualitative and quantitative data are presented that show that the two sampling devices are equivalent. The coated cartridge is ideal for long-term sampling of carbonyls at sub to low parts-per-billion level in ambient air or for short-term sampling of carbonyls at low ppb to parts-per-million level in diluted automotive exhaust emissions. An unknown degradation product of acrolein has been tentatively identified as x-acrolein. The disappearance of acrolein in the analytical sample matrix correlates quantitatively almost on a mole for mole basis with the growth of x-acrolein. The sum of the concentration of acrolein and x-acrolein appears to be invariant with time.  相似文献   

4.
A procedure is proposed for the determination of the vapor concentration of 2,4,6-trinitrotoluene (TNT) in air at a level of 10–16 g/cm3 in the control of objects for the presence of TNT. The procedure includes preconcentration of TNT vapors and gas chromatographic determination with a limit of TNT detection at a level of 0.08 ± 0.02 pg in a sample. The procedure was applied to the control objects in cells of typical automatic luggage locker with sampling through sampling air ducts. A measure of sample losses as the breakthrough of vapors through sampling air ducts and gas dynamic conditions for the reduction of vapor losses as the ratio of diffusion coefficient to the air duct flow rate were proposed. The time constant of the saturation of the sampling system with TNT vapors and the time constant of its cleaning were determined. It was shown that TNT vapors can be detected virtually satisfactorily near TNT-containing objects with sampling through long channels.  相似文献   

5.
Summary An improved analytical procedure has been developed for the detection of formaldehyde, acetaldehyde, acetone and other volatile carbonyls in clean air. For sampling, 2,4-dinitrophenyl-hydrazine (DNPH) coated silica gel cartridges were used. DNPH reacts with carbonyls and forms carbonyl hydrazones which are extracted with acetonitrile and subsequently separated by reversed phase HPLC. Sampling flow rates up to 3.5 l/min were tested. The quantification limit of the complete sampling and analytical procedure is 60 ng carbonyl which corresponds to a mixing ratio of 1 ppbv HCHO in a 45 l air sample taken during a sampling time of 13 min. Carbonyl mixing ratios down to 0.1 ppbv can be determined. The collection efficiency and the elution recovery range between 96 and 100%; the precision is ±5% for HCHO and ±4% for CH3CHO at mixing ratios of 1 ppbv. This technique can also be applied for the determination of aldehydes and ketones in the aqueous phase, e.g. cloud and fog water. In this case, carbonyls were converted to hydrazones simply by mixing the aqueous sample with an acidified DNPH solution. After 40 min reaction time, the hydrazones were analysed by HPLC. The detection limit was 0.2 mol HCHO/l. Possible interference caused by ozone and NO2 was eliminated by using KI filters connected in series with the DNPH-coated cartridges. The analytical procedure was tested at a mountain measuring station and proved to be a suitable method for monitoring carbonyl compounds in clean air.  相似文献   

6.
In general, volatile organic compounds in ambient air are quantified by following a well‐defined standard calibration procedure using a gas‐/liquid‐phase standard. If the liquid standard is analyzed by a thermal desorption, the solvent effect is unavoidable through the alteration of breakthrough properties or retention times. To learn more about the variables of the thermal desorption‐based analysis, the effect of pre‐purge conditions was evaluated for 18 volatile organic compounds with different types of sorbent tube materials by fixing standard volume (1 μL) and flow rate (100 mL/min). The gas phase calibration was also carried out as reference for the non‐solvent effect. A single tube filled with Tenax TA exhibited the least solvent effect with the short pre‐purge (1 min), while being subject to the breakthrough at or above 10 min pre‐purge. For a three‐bed sorbent tube with Carboxen 1000, at least 10 min of pre‐purge was needed for the compounds with a retention time close to methanol (e.g., propanal). Another three‐bed tube with Carbopack X reduced the solvent effect efficiently for a short pre‐purge (2 min) without the breakthrough. As such, the solvent effect can be adjusted by the proper control of the sorbent tube application.  相似文献   

7.
Abstract

The high volatility and low water solubility of volatile organic compounds (VOCs), make the collection of representative samples difficult. The standard grab sampling method only gives information of that moment in time when the sample is taken. When the composition of VOCs is varying, continuous composite sampling will give a more representative sample. However, no thorough evaluation of its use for VOCs has been reported.

The use of an automatic continuous composite sampler for the analysis of VOCs in water was studied. The causes and magnitude of the VOCs losses during the sampling process were determined.

Adsorbent cartridges were used to trap the VOCs escaping from solution during the sampling process. Sorption phenomena occurring on the containers and/or tubings were also evaluated. Sorption losses were much more significant than volatilization losses.

The results indicate that a modified version of this sampler can be an alternative for the long term sampling of water for VOC analysis.  相似文献   

8.
Ma H  Zhang H  Tian Y  Wang L  Chen J 《色谱》2011,29(9):912-917
以饮用水中痕量挥发性有机物(VOCs)非目标筛查为目的,构建了一种新型的大体积水样高倍富集装置。对其精馏管长度、回收冷凝液体积、吸收介质等影响富集效果的关键因素进行了优化。该装置以水蒸气为吹扫气,同时以水作为吸收剂,将1 L水样富集浓缩至5 mL后,可使原有吹扫捕集-气相色谱-质谱法(P&;T-GC-MS)分析VOCs的灵敏度提高1~2个数量级。用该方法对某净水厂的源水与出厂水进行了痕量VOCs的定性分析与比较。与传统P&;T-GC-MS方法相比,本方法对两种水样的污染物检出数目由原来的无检出和5种分别提高至16种和35种。分析结果表明饮用水消毒前后污染物的种类及含量存在显著差异。  相似文献   

9.
A novel method for collection and analysis of vapor-phase semivolatile organic compounds (SOCs) in ambient air is presented. The method utilizes thermal desorption of SOCs trapped in diffusion denuders coupled with cryogenic preconcentration on Tenax-TA and analysis by high resolution gas chromatography (GC)-electron-capture detection (ECD). The sampling and analysis methods employ custom-fabricated multicapillary diffusion denuders, a hot gas spike (HGS) apparatus to load known quantities of thermally stable standards into diffusion denuders prior to sample collection, a custom-fabricated oven to thermally desorb SOCs from the diffusion denuder, and a programmable temperature vaporization (PTV) inlet containing a liner packed with Tenax-TA for effective preconcentration of the analytes and water management. High flow rates into the PTV inlet of 750mLmin(-1)during thermal desorption are ca. a factor of ten greater than typically used. To improve resolution and retention time stability, the thermal desorption and PTV inlet programming procedure includes three steps to prevent water from entering the analytic column while effectively transferring the analytes into the GC system. The instrumentation and procedures provide virtually complete and consistent transfer of analytes collected from ambient air into the GC evidenced by recovery of seven replicates of four internal standards of 90.7+/-4.0-120+/-23% (mean+/-95% confidence interval, CI). Retention time based compound identification is facilitated by low retention time variability with an average 95% CI of 0.024min for sixteen replicates of eight standards. Procedure details and performance metrics as well as ambient sampling results are presented.  相似文献   

10.
Lu CJ  Zellers ET 《The Analyst》2002,127(8):1061-1068
A small multi-adsorbent preconcentration/focusing module for a portable GC with microsensor-array detector designed to determine complex mixtures of volatile and semi-volatile organic compounds encountered in indoor working environments is described. Candidate adsorbents were assessed on the basis of analyte thermal-desorption bandwidth and efficiency, chromatographic peak shape, and breakthrough volume against mixtures of organic compounds ranging over four orders of magnitude in vapor pressure. A capillary packed with just 12.3 mg of adsorbent material comprising Carbopack B (8 mg), Carbopack X (2.5 mg) and Carboxen 1000 (1.8 mg) provided the best tradeoff in operating variables, while maintaining sufficient capacity for a 1 L air sample containing a mixture of up to 43 compounds, each at 100 parts-per-billion, at an ambient relative humidity of up to 100%. On-column focusing and temperature programming were used to enhance chromatographic separations, and detection limits as low as 100 parts-per-trillion were achieved for a 1 L air sample using an integrated array of polymer-coated surface-acoustic-wave (SAW) sensors. Implications for field analysis of indoor air quality are emphasized.  相似文献   

11.
A continuous-flow purge-and-trap-GC-MS system was developed for on-line monitoring of THMs (trihalomethanes) in drinking water. Three systems with different traps and purging flow-rates are discussed. In order to minimize interference from water vapor, total purge gas volume and injection temperature were controlled during analysis. Shorter sample concentration time and GC separation time reduced total cycle time to less than 5 min. The detection limits of the system could be lowered to 10 ppt, 25 ppt, 40 ppt, and 50 ppt (w/w) for CHCl3, CHCl2Br, CHClBr2, and CHBr3, respectively. This system could detect changes in sample concentration when applied to the on-line monitoring of THMs in drinking water.  相似文献   

12.
This work describes a new purge and trap gas chromatography electron impact mass spectrometry (PT-GC-EIMS) method for quantifying 3-mercaptohexan-1-ol (3-MH) and 3-mercaptohexyl acetate (3-MHA), two molecules able to characterize some wines with their tropical scents. Firstly the experimental conditions of the purge and trap extraction (sample temperature, extraction time, trap temperature, flow rate) following a multivariate approach were optimized. Then the method through the construction of the calibration curves and the establishment of the detection limits was validated. The purge and trap procedure appears faster and more sensitive than both the headspace solid phase microextraction (HS-SPME) and the solid phase extraction (SPE) procedures, reaching detection limits for the two thiols closer to their sensory thresholds. Evidence of similar performances of the three sampling methods considered was gained comparing the results relevant to same wine samples. The Theil's regression method was used for purpose of comparison.  相似文献   

13.
In the context of a European project, a new approach of sampling of volatile polycyclic aromatic hydrocarbons (PAHs) from air was developed. In fact, the aim of this project was to test the efficiency of an air cleansing prototype reactor, which was operating by non-thermal plasmolysis. With an eye to model the atmosphere ejected by the prototype, we needed to vaporise the volatile PAHs in an air stream at concentrations as low as those recommended by European Directives (96/62/CE) for PAHs in ambient air (i.e. 1 ng m−3). Our strategy was based on the analysis of PAHs trapped in an aqueous medium, in order to avoid important losses of volatile compounds observed during the delicate desorption-concentration step when classical solid supports are used. Then a study was carried out to determine: the design of the collecting part, the flow-rate of the air sampling, the nature and concentration of chemical additives used to enhance PAH solubility in water. The very highly diluted aqueous media obtained after the bubbling step were concentrated by solid-phase extraction (SPE) on hydrophobic cartridges and analysed on-line by reversed-phase HPLC with UV and fluorimetric detections. Lastly, the sampling technique was directly applied to the outlet of the air cleansing prototype and the analysis after 3-6 h of non-thermal plasmolysis showed that the target volatile PAHs were not present in an air stream initially polluted by volatile organic compounds.  相似文献   

14.
测量显微红外光谱时,由于光路暴露在开放流通的空气环境中,水汽的吸收峰常常出现在光谱图中而对样品谱造成干扰。本研究在样品单光束谱收集过程中间,通过适时向测试体系通入干燥的氮气或较潮湿的空气来补偿光路中水汽的量,从而达到样品谱和背景谱测量时水汽的平均含量相等,最终消除水汽吸收峰。本方法用于硬脂酸显微红外光谱的测量,观察到水汽噪音由大到小,直至消失的全过程,结果令人满意。  相似文献   

15.
The effects of incorporating tritiated water into a 14C-sampling system in sample preparation and 14C activity measurement by liquid scintillation counting were investigated. Experiments derived the limit of water content in the prepared sample, and also demonstrated that 14C activity can be determined without any interference from 3H contamination for a clear-sample solution. The results enabled us to estimate the permissible relative humidity of air required for accomplishing sample preparation and 14C activity measurement. These showed that for sampling of air with less than the permissible relative humidity, total 14C activity in airborne effluent can be evaluated accurately without dehumidification of air. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The stability of nonylphenol ethoxylates (NPEO), alcohol ethoxylates (AEO), coconut diethanol amides (CDEA) and linear alkylbenzene sulfonates (LAS) in a water matrix and preconcentrated on SPE cartridges was studied. A stability study was carried out in a water matrix (spiked ground water and real-world waste water) comparing different pretreatment procedures (addition of sulfuric acid to pH = 3, preservation with 1% and 3% of formaldehyde). When stored in a water matrix serious qualitative and quantitative changes occurred in waste water during the period of time studied (30 days). The losses of C12–C14 alcohol ethoxylates ranged from 72% to 88% when the sample was preserved with acid and from 17% to 86% when the sample was preserved with formaldehyde (3%). Simultaneously, an enrichment of the shorter alkyl chain homologues (C7EO and C10EO) was observed. The losses of NPEO were from 45% (sample preserved by acidification or by addition of 3% of formaldehyde) to 85% (sample preserved with 1% of formaldehyde). Additionally, an increase in concentration of polyethylene glycols (PEGs) and formation of different acidic forms, such as monocarboxylated (MCPEGs) and dicarboxylated polyethylene glycols (DCPEGs) were observed. The stability of surfactants preconcentrated on SPE cartridges was studied as a function of storage time and storage conditions (room temperature, 4?°C and –20?°C). The results indicate that disposable SPE cartridges can be recommended for the stabilization of non-ionic surfactants and LAS. Storage at –20?°C is feasible for long periods (up to ¶3 months for ground water and up to 2 months for waste water), while storage at 4?°C can be recommended for a maximum of 1 month. When cartridges were kept at –20?°C the losses of AEOs (n = 12, 13 and 14), preconcentrated from waste water, ranged from 17 to 29% (after 60 days) and other compounds suffered small losses (maximum of 14% for C13LAS). At room temperature, after 7 days, the losses were less than 11%, indicating that shipping of samples by mail can be done without any special requirements.  相似文献   

17.
The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 μL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air.  相似文献   

18.
新型单壁碳纳米管采样吸附剂性能的评价   总被引:3,自引:0,他引:3  
研究了单壁碳纳米管(SWCNTs)作为新型采样吸附剂的性能和效果,并应用于空气中挥发性有机化合物的分析测定。结果表明,单壁碳纳米管具有较大的比表面积,与经典Tenax TA吸附剂相比,对低碳数挥发性强的有机化合物回收率高,有更强的吸附能力;空白实验表明,SWCNTs易获得较低本底,具有化学惰性和疏水特性,采样时水的干扰小。当湿度增加时在误差允许的范围内准确度不受影响;实验测定具有较大的穿透容量和安全采样体积。将单壁碳纳米管吸附剂实际应用于大气中挥发性有机化合物的测定,通过与经典吸附剂Tenax TA相比,更适于采集大气中的挥发性有机化合物。  相似文献   

19.
Solid-phase microextraction on-fiber derivatization applied to carbonyl compounds is known, but application to indoor air is poorly developed and the methods deserve to be complemented and optimized. In this work, two derivatization reagents, pentafluorophenylhydrazine and o-2,3,4,5,6-(pentaflurobenzyl)hydroxylamine (PFBHA), and three fiber coatings were tested in order to select the best combination. As Carboxen-based coatings were proven to induce the formation of by-products during the thermal desorption step, a polydimethylsiloxane–divinylbenzene fiber in association with PFBHA was finally chosen. The study of the derivatization kinetics showed that the reaction of PFBHA with carbonyl compounds was instantaneous, except for acetone. Analyses were performed by gas chromatography coupled with flame ionization detection and mass spectrometry. For 5 min fiber exposure, the limits of detection are below 0.5 μg m-3 in selected ion monitoring mode, the reproducibility was 15 % on average, and the linearity of the calibration curves was satisfactory. For on-site application, the influence of air humidity and the conditions in which the impregnated fibers were stored were studied. It is possible to store the fibers for 3 days before and for at least 2 days after sampling. The relative humidity of air was shown to have no influence on solid-phase microextraction sampling in the range from 0 to 70 %. For formaldehyde, the method was compared with sampling on 2,4-dinitrophenylhydrazine cartridges, and the first results showed good agreement. Finally, the method was applied to three different indoor environments to check its feasibility.  相似文献   

20.
This study demonstrates the use of solid-phase microextraction (SPME) to extract and pre-concentrate volatile signatures from static air above plastic explosive samples followed by detection using ion mobility spectrometry (IMS) optimized to detect the volatile, non-energetic components rather than the energetic materials. Currently, sample collection for detection by commercial IMS analyzers is conducted through swiping of suspected surfaces for explosive particles and vapor sampling. The first method is not suitable for sampling inside large volume areas, and the latter method is not effective because the low vapor pressure of some explosives such as RDX and PETN make them not readily available in the air for headspace sampling under ambient conditions. For the first time, headspace sampling and detection of Detasheet, Semtex H, and C-4 is reported using SPME-IMS operating under one universal setting with limits of detection ranging from 1.5 to 2.5 ng for the target volatile signatures. The target signature compounds n-butyl acetate and the taggant DMNB are associated with untagged and tagged Detasheet explosives, respectively. Cyclohexanone and DMNB are associated with tagged C-4 explosives. DMNB is associated with tagged Semtex H explosives. Within 10 to 60 s of sampling, the headspace inside a glass vial containing 1 g of explosive, more than 20 ng of the target signatures can be extracted by the SPME fiber followed by IMS detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号