首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of dinitrogen pentoxide, N2O5, with hydrogen chloride, HCl, in sulfuric acid solutions was studied at temperatures and compositions relevant to the upper troposphere/lower stratosphere. Experiments were performed using a rotating wetted wall flow tube reactor coupled to a chemical ionization mass spectrometer for the gas-phase detection of reactants (N2O5 and HCl) and products (nitryl chloride, ClNO2, and Cl2) using I– as the reagent ion. Uptake coefficients, γ, were measured under stratospheric conditions: 205 < T < 225 K; 50 and 60 wt % H2SO4 solutions; 5.8 × 10(–5) < [HCl]liq < 0.1 M. Uptake coefficients of N2O5 on pure H2SO4/H2O (50 and 60 wt % H2SO4) and HCl-doped H2SO4 were found to be independent of temperature and sulfuric acid composition (weight percent of H2SO4 and HCl concentration) consistent with previous studies. ClNO2 was observed to be a major gas-phase product with its yield strongly dependent on the liquid-phase HCl concentration (5.8 × 10(–5) to 0.1 M HCl) and with a maximum yield of nearly unity at 0.005 M HCl in both 50 and 60 wt % sulfuric acid solutions. The Cl2 yield was <1% under all conditions studied. ClNO2 production was attributed to the heterogeneous reaction of NO2(+)(aq), or H2NO3(+)(aq) (formed in the dissociative ionization of N2O5), with Cl–. The variation of the ClNO2 yield with HCl concentration was attributed to the competition between the reaction of NO2(+)(aq), or H2NO3(+)(aq) with Cl– and H2O. Using our measured yields as a function of HCl concentrations in 50 and 60 wt % H2SO4 solutions at different temperatures, we calculated the variation of the ClNO2 yield under stratospheric conditions. The atmospheric implications of these findings were examined using a 2D atmospheric model. The contribution of this chemistry to ozone depletion was found to be a minor process under nonvolcanic background aerosol levels.  相似文献   

2.
We report experimental results on the low-temperature uptake of HCl on H(2)O ice (ice). HCl was deposited on the surface at greater than monolayer amounts at 85 K, and the ice substrate was heated. The temperature dependence of the HCl vapor pressure from this phase was measured from 110 to 150 K, with the nucleation of a bulk hydrate phase observed at 150 K. Measurements were conducted in a closed system by simultaneous application of gas phase mass spectrometry and surface spectroscopy to characterize vapor/solid equilibrium and the nucleation of bulk hydrate phases. Combining the nucleation data reported here with data we reported previously (180 to 200 K) and data from two other laboratories (165 and 170 K), the thermodynamic boundaries for the nucleation of both the metastable bulk solution and bulk hydrate phases subsequent to monolayer adsorption of HCl have been determined. The nucleation of the metastable bulk solution phase occurs promptly at monolayer coverage at the ice/liquid coexistence boundary on the binary bulk phase diagram. The nucleation of the bulk hexahydrate occurs from this metastable solution along a locus of points defining a state of constant solution free energy. This measured free energy is -51.2 +/- 0.9 kJ/mol. Finally, the temperature dependence of the HCl vapor pressure from the low-temperature phase is reported here for the first time and is consistent with that of the metastable solution predicted by this thermodynamic model of uptake, extending the range of validity of this model of adsorption followed by bulk solution and hydrate nucleation to a lower bound in temperature of 110 K.  相似文献   

3.
The crystal and molecular structure of the hydrochloride salt of the peptide sweetener aspartame (alpha-L-Asp-L-Phe methyl ester) has been determined at 120 K using 3877 reflections with I greater than 2.5 sigma I. Space group P2(1)2(1)2(1), cell dimensions a = 6.768(1), b = 9.796(1) and c = 26.520(3) A; final R factor 0.033. While the N-terminal L-Asp group in the structure of aspartame itself forms a six-membered ring with an intramolecular hydrogen bond between the carboxylate and the protonated amino terminus, the corresponding group in the hydrochloride adopts a completely different conformation with a weak intramolecular hydrogen bond between the carboxyl group and the N atom of the L-Phe residue. The L-Phe methyl ester moiety is rather similar in the two structures. Of the many possible conformations of aspartame, only one may be expected to function as a substrate at the receptor site for sweet taste, and a proposal is made for this active conformation.  相似文献   

4.
(H2O)10 and (H2O)12 are used to investigate the growth of ice on metal surfaces with hexagonal symmetry. The model of the virtual metal surface was used to separate the electronic structure of the metal from that of the water cluster while maintaining the geometric constraints imposed by the metal surface on the water cluster. To complement the ab initio calculations on the water cluster, an additional multicenter analysis was done to analyze the hydrogen bonds within the clusters. These calculations suggested that the water bilayer structure adjacent to the virtual metal surface effectively shields the growing ice crystal from the metal surface.  相似文献   

5.
The Voronoi polyhedrons constructed within the framework of molecular–dynamic model of water clusters are used for the analysis of the hydration of HF and HCl molecules. The metric (lengths, angles, surfaces, and volumes) and polyhedron energy parameters are considered. The quantitative characteristics of hydration are derived on this basis.  相似文献   

6.
Rates of homogeneous nucleation of H2O droplets in a temperature range from 236.37 to 237.91 K and of D2O droplets from 241.34 to 242.33 K were measured. The single microdroplets consisted of pure H2O or D2O and were levitated in an electrodynamic balance. In comparison to H2O, D2O shows a stronger tendency to nucleate. Over the investigated temperature interval, D2O droplets need to be supercooled less by 1.1 K compared to H2O droplets in order to arrive at the same nucleation rate. This is in good agreement with the higher degree of intermolecular association in liquid D2O, a fact which has been well established previously both from theory and experimental studies.  相似文献   

7.
We have developed a new thermodynamic theory of the quasiliquid layer, which has been shown to be effective in modeling the phenomenon in a number of molecular systems. Here we extend our analysis to H(2)O ice, which has obvious implications for environmental and atmospheric chemistry. In the model, the liquid layer exists in contact with an ice defined as a two-dimensional lattice of sites. The system free energy is defined by the bulk free energies of ice I(h) and liquid water and is minimized in the grand canonical ensemble. An additional configurational entropy term arises from the occupation of the lattice sites. Furthermore, the theory predicts that the layer thickness as a function of temperature depends only on the liquid activity. Two additional models are derived, where slightly different approximations are used to define the free energy. With these two models, we illustrate the connection between the quasiliquid phenomenon and multilayer adsorption and the possibility of a two-dimensional phase transition connecting a dilute low coverage phase of adsorbed H(2)O and the quasiliquid phase. The model predictions are in agreement with a subset of the total suite of experimental measurements of the liquid thickness on H(2)O ice as a function of temperature. The theory indicates that the quasiliquid layer is actually equivalent to normal liquid water, and we discuss the impact of such an identification. In particular, observations of the liquid layer to temperatures as low as 200 K indicate the possibility that the quasiliquid is, in fact, an example of deeply supercooled normal water. Finally, we briefly discuss the obvious extension of the pure liquid theory to a thermodynamic theory of interfacial solutions on ice in the environment.  相似文献   

8.
The sound velocity in polycrystalline ice was measured as a function of pressure at room temperature to 100 GPa, through the phase field of ice VII and crossing the ice X transition, by Brillouin scattering in order to examine the elasticity, compression mechanism, and structural transitions in this pressure range. In particular, we focused on previously proposed phase transitions below 60 GPa. Throughout this pressure range, we find no evidence for anomalous changes in compressibility, and the sound velocities and elastic moduli do not exhibit measurable discontinuous shifts with pressure. Subtle changes in the pressure dependence of the bulk modulus at intermediate pressures can be attributed to high shear stresses at these compressions. The C(11) and C(12) moduli are consistent with previously reported results to 40 GPa and increase monotonically at higher pressures.  相似文献   

9.
Molecular beams were used to grow amorphous and crystalline H(2)O films and to dose HCl upon their surface. The adsorption state of HCl on the ice films was probed with infrared spectroscopy. A Zundel continuum is clearly observed for exposures up to the saturation HCl coverage on ice upon which features centered near 2530, 2120, 1760, and 1220 cm(-1) are superimposed. The band centered near 2530 cm(-1) is observed only when the HCl adlayer is in direct contact with amorphous solid water or crystalline ice films at temperatures as low as 20 K. The spectral signature of solid HCl (amorphous or crystalline) was identified only after saturation of the adsorption sites in the first layer or when HCl was deposited onto a rare gas spacer layer between the HCl and ice film. These observations strongly support conclusions from recent electron spectroscopy work that reported ionic dissociation of the first layer HCl adsorbed onto the ice surface is spontaneous.  相似文献   

10.
11.
The interaction of H(2)O(2) with ice surfaces at temperatures between 203 and 233 K was investigated using a low pressure, coated-wall flow tube equipped with a chemical ionisation/electron impact mass spectrometer. Equilibrium surface coverages of H(2)O(2) on ice were measured at various concentrations and temperatures to derive Langmuir-type adsorption isotherms. H(2)O(2) was found to be strongly partitioned to the ice surface at low temperatures, with a partition coefficient, K(linC), equal to 2.1 × 10(-5) exp(3800/T) cm. At 228 K, this expression results in values of K(linC) which are orders of magnitude larger than the single previous determination and suggests that H(2)O(2) may be significantly partitioned to the ice phase in cirrus clouds. The partition coefficient for H(2)O(2) was compared to several other trace gases which hydrogen-bond to ice surfaces and a good correlation with the free energy of condensation found. For this class of trace gas a simple parameterisation for calculating K(linC)(T) from thermodynamic properties was established.  相似文献   

12.
Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].  相似文献   

13.
14.
 The nature and importance of nonadditive three-body interactions in the (H2O)2HCl cluster have been studied by the supermolecule coupled-cluster method and by symmetry-adapted perturbation theory (SAPT). The convergence of the SAPT expansion was tested by comparison with the results obtained from the supermolecule coupled-cluster calculations including single, double, and noniterative triple excitations [CCSD(T)]. It is shown that the SAPT results reproduce the converged CCSD(T) results within 3% at worst. The SAPT method has been used to analyze the three-body interactions for various geometries of the (H2O)2HCl cluster. It is shown that the induction nonadditivity is dominant, but it is partly quenched by the first-order Heitler–London-type exchange and higher-order exchange–induction/deformation terms. This implies that the classical induction term alone is not a reliable approximation to the nonadditive energy and that it will be difficult to approximate the three-body potential for (H2O)2HCl by a simple analytical expression. The three-body energy represents as much as 21–27% of the pair CCSD(T) intermolecular energy. Received: 15 September 1999 / Accepted: 3 February 2000 / Published online: 2 May 2000  相似文献   

15.
We present a theoretical study of infrared and Raman line shapes of polycrystalline and single crystal ice Ih, for both water and heavy water, at 1, 125, and 245 K. Our calculations involve a mixed quantum/classical approach, a new water simulation model with explicit three-body interactions, transition frequency and dipole maps, and intramolecular and intermolecular vibrational coupling maps. Our theoretical spectra are in reasonable agreement with experimental spectra (available only near the two higher temperatures). We trace the origins of the different spectral peaks to weak and strong intermolecular couplings. We also discuss the delocalization of the vibrational eigenstates in terms of the competing effects of disorder and coupling.  相似文献   

16.
用MP2方法及aug-cc-pVDZ,aug-cc-pVDZ+BF,aug-cc-pVTZ和aug-cc-pVTZ+BF基组对(H2O)2和(HCl)2超分子的静态偶极矩μ0,极化率α0及第一超极化率β0进行计算.采用Counterpoise方法消除基组的重叠误差(BSSE),得到上述物理性质的分子间相互作用的贡献,在此基础上研究了其中新的长程π型氢键的效应.  相似文献   

17.
The free energy, entropy, and work of formation of H3O+(H2O)n clusters (n=1–27) in water vapor (300 K) were calculated by the Monte Carlo method. Binary correlation functions were calculated. The calculations are based on the nonpair interaction model presented in the previous publication. The hydration shell of the ion is thermally stable in the size range under study. Nonpair interactions exert an essential effect on the structure of the cluster. Fitting the cluster behavior to its experimental thermodynamic characteristics shows that the excess charge of the ion is spatially delocalized at room temperature, and the role of hydrogen bonds is strengthened on this background. Clusters formed on electric charges have such a fundamental characteristic as transition size. The transition size is independent of vapor pressure and demarcates two qualitatively different mechanisms of holding molecules in a cluster. A change in the holding mode is reflected on the mechanism of vapor nucleation.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 10, 2004, pp. 1585–1592.Original Russian Text Copyright © 2004 by Shevkunov.For communication I, see [1].This revised version was published online in April 2005 with a corrected cover date.  相似文献   

18.
Theoretical studies of the interaction of HCl with small water clusters have so far neglected the effect of temperature, which ranges from a few tens of kelvin in cluster experiments, up to about 250 K in typical atmospheric conditions. We study the dynamical behavior of a selected set of HCl(H2O)6 clusters, representative of undissociated and dissociated configurations, by means of DFT-based first principles molecular dynamics. We find that the thermodynamcal stability of different configurations can be affected by temperature. We also present the infrared spectra of dissociated and undissociated configurations at 200 K and discuss the origin of the spectral features.  相似文献   

19.
The extent of crystal fragmentation in electron pulse-irradiated H2O ice does not affect the spectral distribution of the luminescence emitted by the ice, except in the case of the Balmer α-emission at 656 nm, which is reduced in intensity when the extent of ice fragmentation is increased. The luminescence intensity at 400 nm is sufficiently high for luminescence decay half-lives to be measured and these do not change with ice fragmentation. The effect of fragmentation on the Balmer α-intensity is explained by the trapping at dislocations of either exciton or electron precursors to the luminescence.  相似文献   

20.
A study has been carried out on the kinetics of the temperature-programmed desorption of O2, HCl, and H2O from the surface of cobalt chromite. A mathematic model was obtained for the kinetics of the thermal desorption and a method was developed for determining the kinetic constants. The kinetic parameters of the desorption of O2, HCl, and H2O were calculated using these experimental data.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 29, No. 5, pp. 449–455, September–October, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号