首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The well-known generalized assignment problem (GAP) is to minimize the costs of assigning n jobs to m capacity constrained agents (or machines) such that each job is assigned to exactly one agent. This problem is known to be NP-hard and it is hard from a computational point of view as well. In this paper, follows from practical point of view in real systems, the GAP is extended to the equilibrium generalized assignment problem (EGAP) and the equilibrium constrained generalized assignment problem (ECGAP). A heuristic equilibrium strategy based genetic algorithm (GA) is designed for solving the proposed EGAP. Finally, to verify the computational efficiency of the designed GA, some numerical experiments are performed on some known benchmarks. The test results show that the designed GA is very valid for solving EGAP.  相似文献   

2.
The generalized assignment problem (GAP), the 0–1 integer programming (IP) problem of assigning a set of n items to a set of m knapsacks, where each item must be assigned to exactly one knapsack and there are constraints on the availability of resources for item assignment, has been further generalized recently to include cases where items may be shared by a pair of adjacent knapsacks. This problem is termed the generalized assignment problem with special ordered sets of type 2 (GAPS2). For reasonably large values of m and n the NP-hard combinatorial problem GAPS2 becomes intractable for standard IP software, hence there is a need for the development of heuristic algorithms to solve such problems. It will be shown how a heuristic algorithm developed previously for the GAP problem can be modified and extended to solve GAPS2. Encouraging results, in terms of speed and accuracy, have been achieved.  相似文献   

3.
The Generalized Assignment Problem (GAP) seeks an allocation of jobs to capacitated resources at minimum total assignment cost, assuming a job cannot be split among multiple resources. We consider a generalization of this broadly applicable problem in which each job must not only be assigned to a resource, but its resource consumption must also be determined within job-specific limits. In this profit-maximizing version of the GAP, a higher degree of resource consumption increases the revenue associated with a job. Our model permits a job’s revenue per unit resource consumption to decrease as a function of total resource consumption, which allows modeling quantity discounts. The objective is then to determine job assignments and resource consumption levels that maximize total profit. We develop a class of heuristic solution methods, and demonstrate the asymptotic optimality of this class of heuristics in a probabilistic sense.  相似文献   

4.
We propose truthful approximation mechanisms for strategic variants of the generalized assignment problem (GAP) in a payment-free environment. In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any singular bin. In our strategic variant, bins are held by strategic agents and each agent may hide its willingness to receive some items in order to obtain items of higher values. The model has applications in auctions with budgeted bidders.  相似文献   

5.
The generalized quadratic assignment problem (GQAP) is a generalization of the NP-hard quadratic assignment problem (QAP) that allows multiple facilities to be assigned to a single location as long as the capacity of the location allows. The GQAP has numerous applications, including facility design, scheduling, and network design. In this paper, we propose several GRASP with path-relinking heuristics for the GQAP using different construction, local search, and path-relinking procedures. We introduce a novel approximate local search scheme, as well as a new variant of path-relinking that deals with infeasibilities. Extensive experiments on a large set of test instances show that the best of the proposed variants is both effective and efficient.  相似文献   

6.
In Distribution System Design, one minimizes total costs related to the number, locations and sizes of warehouses, and the assignment of warehouses to customers. The resulting system, while optimal in a strategic sense, may not be the best choice if operational aspects such as vehicle routing are also considered.We formulate a multicommodity, capacitated distribution planning model as anon-linear, mixed integer program. Distribution from factories to customers is two-staged via depots (warehouses) whose number and location must be chosen. Vehicle routes from depots to customers are established by considering the “fleet size and mix” problem, which also incorporates strategic decisions on fleet makeup and vehicle numbers of each type. This problem is solved as a generalized assignment problem, within an algorithm for the overall distribution/routing problem that is based on Benders decomposition. We furnish two version of our algorithm denoted Technique I and II. The latter is an enhaancement of the former and is employed at the user's discretion. Computer solution of test problems is discussed.  相似文献   

7.
Within the class dominant strategy incentive compatible mechanisms, we show that there exists an optimal contracting mechanism for the principal for a version of the incomplete information principal-agent problem in which several agents compete for a contract and the principal selects an agent via a contract auction. In our auction model, we assume that the principal and the agents are risk averse, and we allow for uncountably many agent types. We also assume that the principal's probability measure over type profiles in such that correlation between agent's types is possible. Thus, we do not require that agents' types be independently distributed. Finally, we impose limited liability constraints upon the set of contracts. Due to the nature of the individual rationality and incentive compatibility constraints, the existence problem is nonstandard and novel existence arguments are required. We prove existence using a measurable selection result and a new notion of compactness called K-compactness.  相似文献   

8.
We develop and test a heuristic based on Lagrangian relaxation and problem space search to solve the generalized assignment problem (GAP). The heuristic combines the iterative search capability of subgradient optimization used to solve the Lagrangian relaxation of the GAP formulation and the perturbation scheme of problem space search to obtain high-quality solutions to the GAP. We test the heuristic using different upper bound generation routines developed within the overall mechanism. Using the existing problem data sets of various levels of difficulty and sizes, including the challenging largest instances, we observe that the heuristic with a specific version of the upper bound routine works well on most of the benchmark instances known and provides high-quality solutions quickly. An advantage of the approach is its generic nature, simplicity, and implementation flexibility.  相似文献   

9.
We extend the classical linear assignment problem to the case where the cost of assigning agent j to task i is a multiplication of task i’s cost parameter by a cost function of agent j. The cost function of agent j is a linear function of the amount of resource allocated to the agent. A solution for our assignment problem is defined by the assignment of agents to tasks and by a resource allocation to each agent. The quality of a solution is measured by two criteria. The first criterion is the total assignment cost and the second is the total weighted resource consumption. We address these criteria via four different problem variations. We prove that our assignment problem is NP-hard for three of the four variations, even if all the resource consumption weights are equal. However, and somewhat surprisingly, we find that the fourth variation is solvable in polynomial time. In addition, we find that our assignment problem is equivalent to a large set of important scheduling problems whose complexity has been an open question until now, for three of the four variations.  相似文献   

10.
11.
The elastic generalized assignment problem (eGAP) is a natural extension of the generalized assignment problem (GAP) where the capacities are not fixed but can be adjusted; this adjustment can be expressed by continuous variables. These variables might be unbounded or restricted by a lower or upper bound, respectively. This paper concerns techniques aiming at reducing several variants of eGAP to GAP, which enables us to employ standard approaches for the GAP. This results in a heuristic, which can be customized in order to provide solutions having an objective value arbitrarily close to the optimal.  相似文献   

12.
Collaborating multi-agent systems can handle complex tasks with several or changing mission objectives. We developed a potential field method that allows various information layers to influence the control over a group of vehicles. The gradient of the potential field is the driving force for local action, whereas the global waypoint is determined by the minimum of the agent's potential field. The driving force to the global waypoint is a virtual spring-mass-damper system that pulls the agent towards its waypoint, restricted by the local gradient of the agent's potential field. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We address a problem of vehicle routing that arises in picking up and delivering full container load from/to an intermodal terminal. The substantial cost and time savings are expected by efficient linkage between pickup and delivery tasks, if the time of tasks and the suitability of containers for cargo allow. As this problem is NP-hard, we develop a subgradient heuristic based on a Lagrangian relaxation which enables us to identify a near optimal solution. The heuristic consists of two sub-problems: the classical assignment problem and the generalized assignment problem. As generalized assignment problem is also NP-hard, we employ an efficient solution procedure for a bin packing based problem, which replaces the generalized assignment problem. The heuristic procedure is tested on a wide variety of problem examples. The test results demonstrate that the procedure developed here can efficiently solve large instances of the problem.  相似文献   

14.
The traditional Generalized Assignment Problem (GAP) seeks an assignment of customers to facilities that minimizes the sum of the assignment costs while respecting the capacity of each facility. We consider a nonlinear GAP where, in addition to the assignment costs, there is a nonlinear cost function associated with each facility whose argument is a linear function of the customers assigned to the facility. We propose a class of greedy algorithms for this problem that extends a family of greedy algorithms for the GAP. The effectiveness of these algorithms is based on our analysis of the continuous relaxation of our problem. We show that there exists an optimal solution to the continuous relaxation with a small number of fractional variables and provide a set of dual multipliers associated with this solution. This set of dual multipliers is then used in the greedy algorithm. We provide conditions under which our greedy algorithm is asymptotically optimal and feasible under a stochastic model of the parameters.  相似文献   

15.
This paper proposes an exact algorithm to solve the robust design problem in a capacitated flow network in which each edge has several possible capacities. A capacitated flow network is popular in our daily life. For example, the computer network, the power transmission network, or even the supply chain network are capacitated flow networks. In practice, such network may suffer failure, partial failure or maintenance. Therefore, each edge in the network should be assigned sufficient capacity to keep the network functioning normally. The robust design problem (RDP) in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure. However, how to optimally assign the capacity to each edge is not an easy task. Although this kind of problem was known of NP-hard, this paper proposes an efficient exact algorithm to search for the optimal solutions for such a network and illustrates the efficiency of the proposed algorithm by numerical examples.  相似文献   

16.
Bees algorithm (BA) is a new member of meta-heuristics. BA tries to model natural behavior of honey bees in food foraging. Honey bees use several mechanisms like waggle dance to optimally locate food sources and to search new ones. This makes them a good candidate for developing new algorithms for solving optimization problems. In this paper a brief review of BA is first given, afterwards development of a BA for solving generalized assignment problems (GAP) with an ejection chain neighborhood mechanism is presented. GAP is a NP-hard problem. Many meta-heuristic algorithms were proposed for its solution. So far BA is generally applied to continuous optimization. In order to investigate the performance of BA on a complex integer optimization problem, an attempt is made in this paper. An extensive computational study is carried out and the results are compared with several algorithms from the literature.  相似文献   

17.
This note investigates two-machine flow shop scheduling with transportation constraints to minimize makespan. Recently, Soukhal et al. [A. Soukhal, A. Oulamara, P. Martineau, Complexity of flow shop scheduling problems with transportation constraints, European Journal of Operational Research 161 (2005) 32–41] proved that this problem is strongly NP-hard when the capacity of the truck is limited to two or three parts. The considered problem with blocking constraints is also proved to be strongly NP-hard by Soukhal et al. Unfortunately, their proofs contain mistakes. We point out their proofs’ invalidity and then show that, when the capacity of the truck is limited to two parts, the problem is binary NP-hard, and when the capacity of the truck is limited to three parts the problem is strongly NP-hard even if the jobs have a common processing time on machine one and all jobs have the same transportation time. We show also that the last result can be generalized to any fixed c (c ? 3) parts.  相似文献   

18.
鉴于广义指派问题的参数确定上通常包含不确定性,因此,将模型的主要参数,即单位费用、资源消耗量,用梯形模糊变量来刻画,从而建立模糊广义指派模型.在模型求解过程中,结合到决策者的实际要求,利用可信性理论将目标函数和约束条件进行清晰化处理,进而通过参数分解法求解.最后,通过数值例子说明模糊广义指派问题的应用,并检验所提方法的有效性.  相似文献   

19.
The generalized assignment problem is a classical combinatorial optimization problem known to be NP-hard. It can model a variety of real world applications in location, allocation, machine assignment, and supply chains. The problem has been studied since the late 1960s, and computer codes for practical applications emerged in the early 1970s. We propose a new algorithm for this problem that proves to be more effective than previously existing methods. The algorithm features a path relinking approach, which is a mechanism for generating new solutions by combining two or more reference solutions. It also features an ejection chain approach, which is embedded in a neighborhood construction to create more complex and powerful moves. Computational comparisons on benchmark instances show that the method is not only effective in general, but is especially effective for types D and E instances, which are known to be very difficult.  相似文献   

20.
《Optimization》2012,61(2):223-233
The generalized assignment problem is that of finding an optimal assignment of agents to tasks, where each agent may be assigned multiple tasks and each task is performed exactly once. This is an NP-complete problem. Algorithms that employ information about the polyhedral structure of the associated polytope are typically more effective for large instances than those that ignore the structure. A class of generalized cover facet-defining inequalities for the generalized assignment problem is derived. These inequalities are based upon multiple knapsack constraints and are derived from generalized cover inequalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号