首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ring-stiffened spherical shell is submerged in an acoustic medium. The shell is thin and elastic. The acoustic medium is inviscid, irrotational and compressible. The center of mass of the shell is subjected to a translational acceleration which is an arbitrary function of time. The absolute displacements of the shell are expressed in terms of the relative displacements and the displacement of the base of the shell, base being defined as the rigid ring placed at the equator. The motion of the acoustic medium is governed by the wave equation. The transient response of the shell is investigated numerically. The results are compared with the results of the in-vacuo response. The effects of the plane wave approximation and the base velocity on the transient response of the shell are studied. The numerical results show that the plane wave approximation accurately predicts the response of the shell in the acoustic medium for short times after excitation. The displacements of the shell in fluid are larger than those in vacuo. But when the base of the shell is restrained from translating, the displacements in fluid are smaller than those in vacuo. Therefore, base translation has a very significant effect on the transient response of the shells submerged in an acoustic medium.  相似文献   

2.
本文从偏心圆柱壳截面的几何特性出发,将偏心圆柱壳问题转化为一个周向变厚度圆柱壳问题,随后利用其状态向量之间的传递矩阵将壳体的振动控制方程转化为矩阵微分方程形式,通过Magnus级数法求解传递矩阵得到频率方程。采用Lagrange插值法得到偏心圆柱壳体自由振动状态下的固有频率,并且与圆柱壳的固有频率进行了比较。对影响结构固有频率的主要参数进行了分析,得到了这些参数和固有频率之间的关系。本文不仅提出了一种有效求解偏心圆柱壳固有频率的新方法,同时亦可为检测偏心圆柱壳的偏心距提供一种新的思路和方法。  相似文献   

3.
壳体对爆炸空气冲击波强度的影响   总被引:3,自引:0,他引:3  
壳体对爆炸空气冲击波强度有重要影响,本文提出一种计算壳体破片速度的新方法,分析了壳体对爆炸空气冲击波强度的影响。本文指出,壳体对爆炸空气冲击波强度的影响取决于产生壳体破片部位的壁厚(质量),而不是壳体的全部质量。这反映了实际情况,也是本文的特点所在。通过重量和形状相同的两种装药爆炸空气冲击波对模拟目标的毁伤实验,考查了本文理论分析结果的可靠性。理论分析与实验结果相吻合。本文得到弹体破片最大速度的上限和下限。破片速度与壳体厚度有关,壳体越厚或质量越大.对空气冲击波强度的影响越显著。  相似文献   

4.
关玉璞  唐立民 《力学进展》1994,24(1):98-105
本文评述了退化壳有限元的现状和发展.首先简要介绍了平板壳有限元和以壳体理论为基础的曲壳有限元,接着介绍了单变量(位移型)退化壳有限元的研究现状,最后介绍了多变量(杂交、混合、拟协调和杂交/混合型)壳有限元.   相似文献   

5.
This paper considers the problem of equilibrium of a nonlinearly elastic spherical shell filled with a heavy fluid and resting on a smooth, absolutely rigid, flat surface. The weight of the shell is assumed to be negligible in comparison with the weight of the fluid filling it. The contact region with the supporting plane is one of the unknowns in the problem. Equilibrium equations for a membrane shell are obtained in an accurate nonlinear formulation. Stresses and strains of a shell made of a Mooney–Rivlin material are numerically investigated. The results are compared with calculation results for the case of inflation of a spherical shell ignoring the weight of the fluid filling. The effect of the fluid weight on shell strains and stresses is estimated.  相似文献   

6.
In the framework of the nonlinear theory of flexible shallow shells, we study free bending vibrations of a thin-walled circular cylindrical shell hinged at the end faces. The finite-dimensional shell model assumes that the excitation of large-amplitude bending vibrations inevitably results in the appearance of radial vibrations of the shell. The modal equations are obtained by the Bubnov-Galerkin method. The periodic solutions are found by the Krylov-Bogolyubov method. We show that if the tangential boundary conditions are satisfied “in the mean,” then, for a shell of finite length, significant errors arise in determining its nonlinear dynamic characteristics. We prove that small initial irregularities split the bending frequency spectrum, the basic frequency being smaller than in the case of an ideal shell.  相似文献   

7.
In the present study, a vibration frequency analysis of a bi-layered cylindrical shell composed of two independent functionally graded layers is presented. The thickness of the shell layers is assumed to be equal and constant. Material properties of the constituents of bi-layered functionally graded cylindrical shell are assumed to vary smoothly and continuously through the thickness of the layers of the shell and are controlled by volume fraction power law distribution. The expressions for strain–displacement and curvature–displacement relationships are utilized from Love’s first approximation linear thin shell theory. The versatile Rayleigh–Ritz approach is employed to formulate the frequency equations in the form of eigenvalue problem. Influence of material distribution in the two functionally graded layers of the cylindrical shells is investigated on shell natural frequencies for various shell parameters with simply supported end conditions. To check the validity, accuracy and efficiency of the present methodology, results obtained are compared with those available in the literature.  相似文献   

8.
The effect of initial imperfections on the parametric vibrations of cylindrical shells is analyzed. The shell has moderate amplitudes of vibrations; therefore, geometrically nonlinear theory is used. The shell vibrations are described by the Donnel equations. The interaction of three pairs of conjugate modes is considered in the analysis. Therefore, the shell vibrations are described by six-degrees-of-freedoms nonlinear dynamical system. The multiple scales method and the continuation technique are used to analyze the system dynamics. The role of initial imperfections in nonlinear dynamics of shell is discussed using frequency responses.  相似文献   

9.
10.
对具环向贯穿脱层的轴对称层合圆柱壳进行振动模态分析.首先,采用Heaviside阶梯函数,构造了一种适合于脱层壳的位移模式.通过对脱层壳的能量分析,应用瑞利--里兹法后,得到用时间函数表示的系统振动控制方程,然后对其求解,得到脱层壳模态分析的特征方程式.算例中,讨论了不同的脱层位置、脱层大小和脱层深度对脱层壳振动模态的影响.  相似文献   

11.
Yang  Shaowu  Hao  Yuxin  Zhang  Wei  Yang  Li  Liu  Lingtao 《应用数学和力学(英文版)》2021,42(7):981-998
In this study, the first-order shear deformation theory(FSDT) is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC). The vibration analyses of the FG-GPLRC truncated conical shell are presented. Considering the graphene platelets(GPLs) of the FG-GPLRC truncated conical shell with three different distribution patterns, the modified Halpin-Tsai model is used to calculate the effective Young's modulus. Hamilton's principle, the FSDT, and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell. The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell. Then, the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method. The effects of the weight fraction and distribution pattern of the GPLs, the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed. This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell.  相似文献   

12.
In this paper, a precise transfer matrix method is presented to calculate the structural and acoustic responses of the conical shell. The governing equations of conical shells are written as a coupled set of first order differential equations. The field transfer matrix of the shell and non-homogenous term resulting from the external excitation are obtained by precise integration method. After assembling the field transfer matrixes, the whole matrix describing dynamic behavior of the stiffened conical shell is obtained. Then the structural and acoustic responses of the shell are solved by obtaining unknown sound pressure coefficients. The natural frequencies of the shell are compared with the FEM results to test the validity. Furthermore, the effects of the semi-vertex angle, driving force directions and boundary conditions on the structural and acoustic responses are studied.  相似文献   

13.
提出了一种分析含内埋矩形脱层正交各向异性圆柱壳稳定性问题的混合变量条形传递函数方法。首先基于Mindlin一阶剪切壳理论,通过定义圆柱壳的广义力变量和混合变量,建立了壳的改进混合变量能量泛函;然后,为了便于脱层壳的分区求解,通过引入条形单元,创建了基于混合变量条形传递函数解的含脱层和不合脱层两种超级壳单元;在此基础上,将含内埋矩形脱层的复合材料层合壳划分成两种超级壳单元的组合体,通过各超级壳单元相互之间连接结点处的位移连续和力平衡条件得到脱层壳的屈曲方程;最后由屈曲方程计算含内埋矩形脱层壳的屈曲载荷和屈曲模态。算例分析的结果验证了本方法的正确性,并给出了几种因素对屈曲载荷和屈曲模态的影响。  相似文献   

14.
The paper studies the interaction of a spherical shock wave with an elastic circular cylindrical shell immersed in an infinite acoustic medium. The shell is assumed infinitely long. The wave source is quite close to the shell, causing deformation of just a small portion of the shell, which makes it possible to represent the solution by a double Fourier series. The method allows the exact determination of the hydrodynamic forces acting on the shell and analysis of its stress state. Some characteristic features of the stress state are described for different distances to the wave source. Formulas are proposed for establishing the safety conditions of the shell.Translated from Prikladnaya Mekhanika, Vol. 40, No. 9, pp. 94–104, September 2004.  相似文献   

15.
The results of mathematical simulation of a solid velocity damping by a soft skeleton fabric shell filled with air on impact on a hard surface are given. The equations of motion of a falling body and of the loading dynamics of membrane shells and the reinforcement rings in the fabric shell are considered together. Themathematical model and the numerical algorithm for solving the spatial problem of the dynamics of inflation of a shell with reinforcement rings are explicitly realized by the finite difference method. The boundary conditions are posed with regard to the contact of the shell elements in compression near the ring belts. The results of numerical experiments considering the interaction of the falling body with the deformable skeleton shell are discussed. The parameters influencing the process of the body braking on impact on a surface are determined.  相似文献   

16.
The optimal geometric and physical parameters of a stepped cylindrical shell are determined. These parameters are optimal in the sense that they ensure the maximum carrying capacity of the shell for its given overall size and weight. The shell is made of a composite material. The refined theory of anisotropic shells is used with consideration of transverse shear effects on the stress-strain state.  相似文献   

17.
提出一种分析脱层圆柱壳稳定性问题的混合变量条形传递函数方法。首先基于一阶剪切理论,通过定义广义位移变量和对应的广义力变量,建立壳的改进的混合变量能量泛函;然后引入条形单元,对混合变量在环向进行离散,从而导出超级壳单元的混合变量能量泛函,由变分原理得到控制方程,采用传递函数方法得到其形式解;最后,将含环向贯穿脱层的复合材料层合壳作为超级壳单元的组合体,得到脱层壳的屈曲方程。给出了脱层大小和深度以及脱层壳边界条件对屈曲载荷的影响。  相似文献   

18.
The effects of the curvature radius of a cylindrical shell on stress intensity factors are investigated in circumferential (inner and outer) semielliptical surface cracks in a cylindrical shell. What is new in this paper is to have given: (1) The stress intensity factors for surface cracks in a cylindircal shell are determined by photoelastic technique. (2) By a special method photoelastic slices are handled for obtaining a clear caustic curve, and the stress intensity factors for surface cracks in a cylindrical shell are determined by the caustic method. (3) An approximate equation of curvature correction factor Fc is proposed. (4) Effects of the curvature radius R of a cylindrical shell on the stress intensity factors of surface cracks are obtained. The results of this paper are in fair agreement with already existing analytical results. The approximate equation of curvature correction factor Fc can be widely used for engineering purposes.  相似文献   

19.
Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and the continuity equation at fluid-shell interface are used in this vibroacoustic problem. The expressions of sound radiation efficiency and sound field of the FGM shell have been derived by mobility method. Radiation efficiency, modal mobility and the directivity pattern of the sound field are solved numerically. In particular, radiation efficiency and directivity pattern with various power law index are analyzed.  相似文献   

20.
Analysis of laminated piezoelectric cylindrical shells   总被引:2,自引:0,他引:2  
A new method is developed for three-dimensional stress analysis of laminated piezoelectric cylindrical shell with simple support. The shell can be subjected to various applied loadings, including distributed body force, inner and outer surface traction and potential. Each layer of the shell can be piezoelectric or elastic/dielectric, with perfect bonding assumed between each interface. The governing equations are solved by the state-space technique. Numerical results are presented to show the sensing and actuating effects of three-layered piezoelectric cylindrical shell. The project supported by the National Natural Science Foundation of China (19572027)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号