首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 67 毫秒
1.
混凝吸附法去除电镀废水中铬的试验   总被引:5,自引:0,他引:5  
介绍一种以热电厂炉渣为主,加入少量硫酸亚铁及明矾配成的混凝吸附剂。用于处理电镀废水中的Cr(Ⅵ),得到较好的效果,其去除率达到99%以上,为电镀镀铬綮不的处理提供了一种以废治废的有效途径。  相似文献   

2.
利用常见的三种酸对木屑进行改性,探讨了不同酸浓度对改性木屑吸附容量的影响,实验表明,当硫酸、磷酸和硝酸的浓度分别为50%、40%、30%、对铬的去除效果最好。实验探讨了吸附时间、吸附温度、p H和吸附剂投加量等因素对Cr~(6+)去除率的影响。在吸附时间为70 min,p H为2时,木屑投加量为1 g、温度为30℃,对铬的去除率,三种酸改性的木屑吸附剂均在此条件下去除率达到最佳,分别为99%、98%、99%。酸改性的木屑对Cr~(6+)吸附行为符合Langmuir等温吸附模型,吸附过程符合准二级动力学模型。  相似文献   

3.
改性硅藻土处理含锌电镀废水的研究   总被引:20,自引:0,他引:20  
为了高效廉价的处理电镀废水,对天然硅藻土进行处理制备成改性硅藻土.在静态条件下,对改性硅藻土处理含锌废水进行了试验研究,探讨了改性硅藻土用量、废水pH值、吸附时间、温度对除锌效果的影响. 结果表明,在废水pH值4.0~7.0、锌浓度0~100 mg/L范围内,按锌与改性硅藻土质量比为1/30投加改性硅藻土进行处理,锌去除率可达98%以上,且处理后废水近中性. 含锌电镀废水经改性硅藻土处理后,废水中锌含量显著低于国家排放标准. 表7,参10.  相似文献   

4.
改性超细粉煤灰吸附Cr~(6+)动力学研究   总被引:1,自引:0,他引:1  
将三种粉煤灰球磨后得到超细粉煤灰,选择采用HCi、H2SO4、NaOH、Ca(OH)2和Na2CO3等对超细粉煤灰进行化学改性,结果表明采用Ca(OH)2改性效果最好,经过改性以后三种超细粉煤灰对Cr6+的去除率提高2.01~2.44倍.研究了Ca(OH)2改性超细粉煤灰对Cr6+的吸附动力学和浓度和pH值对吸附的影响.动力学研究表明,三种改性超细粉煤灰对Cr6+的吸附过程符合二级吸附动力学,吸附为颗粒内扩散控制过程.溶液浓度增加,去除率降低:pH<6时,Cr6+的去除率pH值的增加而增加,pH>6时,去除率减小.  相似文献   

5.
从电镀厂的含铬淤泥中分离获得一株抗铬的脱硫弧菌(SRI)。研究SRI菌去除铬(Ⅵ)的机制和条件。进行了SRI菌去除铬(Ⅵ)的小试和中试。结果表明:SRI菌对废水中总铬的去除率为99.7%;工艺对铬的回收率大于80%。  相似文献   

6.
纳米羟基磷灰石对模拟含铬废水中Cr~(6+)的吸附研究   总被引:3,自引:0,他引:3  
利用田螺厣片作为生物模板制备纳米羟基磷灰石(HAP),并利用正交试验方法研究所制备的纳米HAP对模拟含铬废水中Cr6+的吸附情况,确定了吸附较佳工艺条件.吸附效果最好时吸附率为88.7%.  相似文献   

7.
以碱改性粉煤灰为原料对含铬废水进行吸附处理,研究单因子pH值、温度、粉煤灰的用量、震荡时间4个因素对吸附效果的影响,并对其吸附动力学进行拟合.结果表明,当pH值为9,温度为25℃,碱改性粉煤灰用量为6g/L,振荡时间为60min时,铬离子的去除率高达99.8%.经过动力学拟合发现,碱改性粉煤灰吸附行为符合拟二级动力学模型,属于化学吸附.  相似文献   

8.
研究了甲醛改性绿茶对溶液中Pb2+的吸附行为,考察了溶液pH值、吸附时间、Pb2+初始质量浓度对吸附性能的影响,探讨了茶叶特殊结构与Pb2+吸附机理的内在联系.结果表明,溶液pH值、吸附时间、Pb2+初始质量浓度均影响其对Pb2+的吸附能力,Pb2+在改性绿茶上的吸附动力学符合准二级动力学方程式,其等温吸附行为可以用Langmuir等温线来描述.  相似文献   

9.
采用改性生物质吸附材料,对去除模拟废水中重金属Cu离子的吸附影响因素展开研究.通过单因素和正交试验,对影响吸附效果的生物质材料花生壳投加量、反应体系pH、反应时间、反应温度等变量进行了考察.结果显示,在Cu离子初始浓度50mg/L、反应体系pH4、反应温度20℃、反应时间120min、花生壳投放量0.8g/100mL时,对Cu离子吸附效果最好,吸附率可达90.63%;各因素对吸附模拟废水中重金属Cu离子的影响顺序为pH反应温度反应时间投加量.研究表明,花生壳对模拟废水中重金属Cu离子具有良好的去除作用,但其实际应用有待于进一步探讨.  相似文献   

10.
Al3+改性膨润土处理含氟废水的研究   总被引:8,自引:0,他引:8  
研究了改性前后膨润土对含氟废水的处理能力。结果表明:用40%的AlCl3溶液改性后的膨润土的吸附能力增强,对F^-浓度为30mg/L的低氟废水的去除率由改性前的24.6%提高到83.17%,剩余浓度为5.05mg/L,低于国家排放标准。  相似文献   

11.
利用小麦秸秆对含铜废水进行吸附研究.采用平衡吸附法研究秸秆投加量、溶液pH和反应时间对小麦秸秆吸附水溶液中Cu2+的影响.结果表明,pH显著影响小麦秸秆对Cu2+的吸附;其动力学行为很好的符合Lagergren 准二级反应动力学模型,吸附等温线符合Langmuir模型,在30℃时秸秆对Cu2+的饱和吸附量qm为24.6...  相似文献   

12.
电镀废铬液回收利用技术的研究   总被引:2,自引:0,他引:2  
应用化学处理技术将电镀废铬槽液经过絮凝、沉淀、分离等过程,提纯为高纯度的Cr(Ⅳ)液,复配为高浓度的鞣革铬液,并应用于鞣革。结果表明,应用化学处理技术可将电镀废铬液回收为铬鞣剂,用于鞣革,各项技术指导已达到与国内标准铬粉的同等水平,实现了电镀污水零排放。  相似文献   

13.
前期的筛选实验发现,旱伞草对铬具有良好的修复效果,以此为基础,采用溶液培养法,研究了旱伞草在不同总铬质量浓度、不同p H条件下的生长情况及对镀锌厂含铬废水的修复效果.研究结果表明:在10~30 mg/L的实验质量浓度范围内,旱伞草对镀锌厂含铬废水具有较强的耐受性和修复效果,能使废水中的铬和锌的质量浓度显著降低,达到国家农田灌溉水质标准.  相似文献   

14.
在静态条件下,对PQAAM吸附含重金属离子Cr(Ⅵ)的电镀废水进行了研究,探讨了PQAAM用量、废水pH值、吸附时间、吸附温度对去除Cr(Ⅵ)效果的影响.结果表明,在废水pH值6.0~8.0,Cr(Ⅵ)浓度0~100 mg/L范围内,吸附时间为100 min,吸附温度为20 ℃,按Cr(Ⅵ)与PQAAM质量比为1∶30投加PQAAM进行处理,Cr(Ⅵ)去除率可达98%以上.含Cr(Ⅵ)的电镀废水经PQAMM吸附后,废水中Cr(Ⅵ)的含量显著低于国家排放标准.表5,参9.  相似文献   

15.
以木薯秸杆为原料,经过碱化处理后,进行黄原酸化反应制得木薯秸杆黄原酸酯(SCX).同时对SCX吸附Cr3+的性能及影响因素进行了研究.结果表明,当Cr3+浓度为20 mg/L时,SCX用量为0.2 g、溶液pH值为9、反应温度为30℃、反应时间为30 min的条件下,SCX对Cr3+的吸附率达79.5%.  相似文献   

16.
利用Cr(VI)和Cr3+各自的吸收光谱曲线及其相互影响,研究了电镀车间直排废水中相应的Cr(VI)和Cr3+简便、快速的测定方法,并分别确定了它们的具体测量条件.实验结果表明:在高碱性条件下,Cr(VI)和Cr3+浓度分别在0~180 mg/L和0~250 mg/L范围内具有良好的线性关系,测定准确度和精密度好,完全满足对电镀车间直排废液的分析测试要求.  相似文献   

17.
为提高天然膨润土的吸附性能,以十六烷基三甲基氯化铵(CTAC)为改性剂,制备有机阳离子改性膨润土,并通过吸附实验分析有机改性剂用量、吸附时间、改性膨润土投加量、废水pH及初始质量浓度对模拟染料废水脱色率的影响。结果表明:有机改性剂质量分数为20%,有机改性膨润土投加量为1.0 g/L,振荡时间为30 min,废水pH为6.0,初始质量浓度为40 mg/L时,有机改性膨润土对模拟染料废水的处理效果最佳,脱色率可达到95.66%。该研究为新型改性膨润土处理染料废水提供了技术参考。  相似文献   

18.
生物法处理电镀铬废水的研究   总被引:3,自引:0,他引:3  
主要研究生物法处理电镀铬 [Cr6 ]废水 .采用生物技术从电镀淤泥中分离出高效还原杆菌——脱硫孤菌 ,探讨菌量、铬离子浓度、溶液值、作用温度和时间等因素对还原杆菌去除溶液中铬离子效率 .结果表明 :在菌废比为 1∶ 1 .4 ,温度控制为 2 0~ 3 5℃ ,p H控制在5~ 7,最佳作用时间 1 6~ 2 0 h,[Cr6 ]=75 mg/L时 ,Cr6 去除率可达 99.9%.  相似文献   

19.
为了能以更有效更经济的方法去除废水中的Ni(Ⅱ),选用成本低廉的大豆秸秆制备生物炭作为吸附剂,研究了炭化温度、溶液pH、吸附剂投加量、溶液温度、Cd(Ⅱ)质量浓度对吸附效果的影响,得到了最佳的吸附条件,开拓了去除重金属镍的新方法,同时研究了生物炭对Ni(Ⅱ)的吸附动力学和吸附等温线。实验表明,大豆秸秆生物炭对Ni(Ⅱ)有较好的吸附性能,Ni(Ⅱ)质量浓度为20mg/L,炭化温度为500℃,pH为7,投加量为0.2g,室温为25℃,Cd(Ⅱ)质量浓度为0为最佳吸附条件。吸附反应符合准二级动力学方程。吸附等温线符合Langmuir模型,25℃时饱和吸附量为14.38mg/L。扫描电镜分析显示,炭化使得秸秆孔道结构增多,表面粗糙程度加剧,比表面积增大,从而提高了吸附性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号