首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Small-deformation and large-deformation rheological properties of heat-set whey protein emulsion gels containing active and inactive filler particles have been investigated using a controlled stress rheometer. The results suggest that the contributions to the gel network are quite different for pure protein gels and emulsion gels having similar storage moduli. An emulsion gel containing inactive filler has a larger phase angle due to the energy dissipation at the ‘slippery’ droplet surface under the influence of the applied shear stress. The large-deformation rheology of the heat-set protein gel has behaviour intermediate between that for an entropic biopolymer gel and that for a particle gel. Emulsion gels containing active or inactive fillers behave more like typical particle gel systems.  相似文献   

2.
Diffusion of fluorescent-labeled dextran with different molecular weights was investigated in β-lactoglobulin (β-lg) solutions and gels over a wide range of salt and protein concentrations at pH 7 by combining confocal laser scanning microscope (CLSM) with fluorescence recovery after photobleaching (FRAP). Effects of the protein concentration, the salt concentration and the tracer size were investigated in detail. Diffusion in turbid heterogeneous gels formed at 0.2 M NaCl depended weakly on the probe size and the protein concentration and remained close to that in unheated solutions. A strong decrease of the diffusion coefficient with increasing tracer size and protein concentration was observed in more homogeneous gels formed at lower salt concentrations. Larger dextran chains were trapped in transparent gels formed at NaCl concentration below 0.1 M. The present investigation complements an earlier study of tracer diffusion of larger spherical probes in β-lg gels using multi-particle tracking.  相似文献   

3.
4.
The introduction of true stress strain measurements, at constant strain rate, has promoted the development of empirical or semiempirical models for large deformations in thermoplastics. One such theory, which proposes that the post yield deformation process can be represented by equations derived from the theories of rubber elasticity, has been successfully applied to several glassy polymers. Unexpectedly, it can also model the post yield deformation of many different grades of polyethylene, even when rubber theory is employed in the simplest Gaussian form. Strain hardening is then represented by the single strain hardening coefficient Gp. Examples are given of this equation, which can be modified to give the true engineering or nominal stress σn and then be differentiated to give dσn/dλ = Gp ? Y0 / λ2 + 2Gp / λ3, where Y0 is the yield stress and λ the extension ratio. Negative values of this differential then predict the onset of necking in tension and positive values stabilization of the neck. The relation of Gp to molecular weight is then discussed using literature measurements for polyethylenes of differing molecular weight and similar molecular weight distributions. When these results are then plotted, a strong dependency of Gp on molecular weight is observed. Some implications of these measurements are then considered. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1090–1099, 2007  相似文献   

5.
This work investigates surface properties of a protein particle gel and effects of polysaccharide on the surface microstructure of such a protein gel. Whey protein isolate (WPI) was used as the primary gelling agent, and a polysaccharide (xanthan) was investigated for its surface smoothing effects. The surface properties of heat-set WPI gels with and without the presence of xanthan (0, 0.05, and 0.25%) were characterized using a surface friction technique. The surface friction force of a gel against a stainless steel substrate was found to be highly dependent on the sliding speed for all three gel samples, and the addition of xanthan caused a general reduction of surface friction. The gel containing no xanthan has the largest surface friction and behaved in the most load-dependent manner, whereas the gel containing 0.25% xanthan has the lowest surface friction and showed the least load dependency. It was inferred that the WPI gel containing no xanthan has the roughest surface among the three samples and the presence of xanthan leads to a smoother surface with probably a thinner layer of surface water. Surface features derived from surface friction tests were confirmed by surface microstructure observation from confocal laser scanning microscopy (CLSM) and environmental electron scanning microscopy (ESEM). Surface profiles from CLSM images were used to quantify the surface roughness of these gels. The mean square root surface roughness R(q) was calculated to be 3.8 +/- 0.2, 3.0 +/- 0.2, and 1.5 +/- 0.2 microm for gels containing 0, 0.05, and 0.25% xanthan, respectively. The dual excitation images of protein and xanthan from CLSM observation and images from ESEM observation indicate a xanthan-rich layer at the surfaces of the xanthan-containing gel samples. We speculate that the creation of the outer surface of a particle gel is based on a different particle aggregation mechanism from that leading to network formation in the bulk.  相似文献   

6.
Hen egg yolk is a traditional ingredient used in a wide variety of food emulsions, especially fluid sauces. Industrial processing of these sauces generally involves heat treatments in order to pasteurise or sterilise them. These heat treatments may cause undesired gelation of the emulsion, because egg yolk proteins are particularly thermosensitive. Heat gelation of oil-in-water emulsions prepared with egg yolk may differ from that of egg yolk solutions, because of the influence of oil droplets on network formation. In this study, we investigated the influence of oil droplets on the gelation of oil-in-water emulsions made with yolk. We studied three pH values: 3.0, 5.0 and 7.0 with a constant NaCl concentration: 0.55 M. Oil droplet size was controlled after emulsification, gelation of solutions and emulsions was monitored in situ by coupling heating with recording viscoelastic properties, and transmission electron microscopy was conducted in heat-set emulsion gels. In an attempt to target the proteins that impose the kinetic of gelation of egg yolk, we repeated the experiment with plasma and granules, the main fractions of yolk. In situ rheology showed that, in our experimental conditions [especially oil volume fraction (0.3) and oil droplet size (d3.2=1 &mgr;m)], emulsions made with yolk and plasma have a similar gelation process with oil droplets acting as inactive fillers. Furthermore, transmission electron microscopy showed similar network characteristics between heated emulsions made with yolk and plasma. Moreover, we demonstrated that acidic conditions provided the fastest gelation of yolk solutions and emulsions. On the other hand, in emulsions prepared with granules, oil droplets behaved as active filler particles and reinforced the gel strength.  相似文献   

7.
In this work, the gelation kinetics and fractal character of lysozyme gel matrices developed in tetramethylurea (TMU)-water media were investigated. Gelation times were determined from the temporal crossover point between the storage, G', and loss, G', moduli, as a function of the binary solvent composition and of protein concentration. The inverse dependence of the upper limit of the linear viscoelastic region (gamma0) on protein concentration indicate that the lysozyme gels belong to the "strong link" kind, a gel category where interparticle links are stronger than intraparticle ones. Lysozyme gel fractal dimensions (Df) were determined from the analysis of rheological data according to a scaling theory by Shih et al. [Phys. Rev. A 42 (1990) 4772-4779] and were found to be compatible with a diffusion-limited cluster-aggregation kinetics (DLCA) for lysozyme gels formed at the TMU mass fraction in the binary organic-aqueous solvent, wTMU=0.9, and with a reaction-limited cluster aggregation kinetics (RLCA) for wTMU in the 0.6< or =wTMU< or =0.8 range.  相似文献   

8.
9.
Electrospray ionization mass spectrometry (ESI-MS) is a valuable tool in structural biology for investigating globular proteins and their biomolecular interactions. During the electrospray ionization process, proteins become desolvated and multiply charged, which may influence their structure. Reducing the net charge obtained during the electrospray process may be relevant for studying globular proteins. In this report we demonstrate the effect of a series of inorganic and organic gas-phase bases on the number of charges that proteins and protein complexes attain. Solution additives with very strong gas-phase basicities (GB) were identified among the so-called "proton sponges". The gas-phase proton affinities (PA) of the compounds that were added to the aqueous protein solutions ranged from 700 to 1050 kJ mol(-1). Circular dichroism studies showed that in these solutions the proteins retain their globular structures. The size of the proteins investigated ranged from the 14.3 kDa lysozyme up to the 800 kDa tetradecameric chaperone complex GroEL. Decharging of the proteins in the electrospray process by up to 60 % could be achieved by adding the most basic compounds rather than the more commonly used ammonium acetate additive. This decharging process probably results from proton competition events between the multiply protonated protein ions and the basic additives just prior to the final desolvation. We hypothesize that such globular protein species, which attain relatively few charges during the ionization event, obtain a gas-phase structure that more closely resembles their solution-phase structure. Thus, these basic additives can be useful in the study of the biologically relevant properties of globular proteins by using mass spectrometry.  相似文献   

10.
Egg yolk remains a key ingredient of a number of food products. Yet, its main functional properties, e.g. emulsifying ability and gel structure formation, upon heating, have not attracted the attention of too many researchers specializing in the area of food colloids. It is not surprising then that there have been only very few major advances in the field over the period of the last few years. These are discussed in the present review and include recent research findings on competitive adsorption between yolk protein constituents at emulsion oil–water interfaces, and also on the relationship between yolk particle supermolecular structure disorganization and the rheological properties of yolk-based emulsions and gel-network structures.  相似文献   

11.
The nature of strain hardening in glassy polymers is investigated by studying the mechanical response of oriented polycarbonate in uniaxial extension and compression. The yield stress in extension is observed to increase strongly with predeformation, whereas it slightly decreases in compression (the so-called Bauschinger effect). Moreover, oriented specimens tend to display increased strain hardening in extension, whereas this nearly vanishes in compression. It is shown that these observations can be captured by the introduction of a viscous contribution to strain hardening in terms of a deformation dependence of the flow stress. This can originate either from a deformation-induced change in activation volume, as observed for isotactic polypropylene, or from a deformation-induced change of the rate constant, as observed for polycarbonate, which causes the room temperature yield kinetics of this material to shift from the α into the (α+β) regime. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1483–1491, 2010  相似文献   

12.
A microcrack-shear band chain model for the fracture of ductile materials is proposed. The fractal dimension (D) of the fracture surfaces is derived and correlated with the fracture toughness (KIc) of ductile materials. The fractal dimension of the fracture surface is predicted to have an inverse trend with the fracture toughness. The theoretical results are consistent with the experimental results of some polymers and metals. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The frequency distributions of internal dynamics of a protein are calculated in solution using normal mode analysis. Our test case is bovine pancreatic trypsin inhibitor, consisting of 58 amino acid residues. Each water molecule surrounding the protein is treated as an internally rigid body that can move with the vibrating protein. The water molecules are redistributed around the protein, as dictated by the potential energy. It is shown that water molecules around the protein are essential for the protein to keep its tertiary structure close to the X-ray structure. The density of states calculated in this model is shifted toward high frequencies when compared with results previously obtained with a model in which the water molecules were not allowed to move with the protein. This shift toward high-frequency states originates from the stronger interactions of water molecules with the sidechain atoms in the protein. The present model is computationally demanding. So the previous (frozen water) model is suggested to be a reasonable approximation for expressing internal dynamics of a protein in solution. © 1996 by John Wiley & Sons, Inc.  相似文献   

14.
The effect of gelation of the polysaccharide phase on the phase separation was investigated for mixtures of anionic polysaccharide (kappa-carrageenan) and globular protein (beta-lactoglobulin) clusters at pH 7 well above the iso-electric point. Gelation of kappa-carrageenan was induced by cooling in the presence of KCl. In the liquid state the protein clusters phase-separate into relatively dense micro-domains. When the polysaccharide phase gelled during cooling, the turbidity of the systems decreased dramatically. Light scattering experiments showed that the density of the micro-domains decreased, while microscopy showed that the number and size was not strongly modified. It is concluded that smaller protein clusters leave the micro-domains when kappa-carrageenan gels. The effect could be reversed by reheating the samples and thus melting the gel and was observed for repeated heating and cooling cycles. The effect of gelation on phase separation decreases with increasing polysaccharide concentration and with ageing of the liquid mixture. The latter is caused by the formation of bonds between the protein clusters in the micro-domains that slowly reinforce with time.  相似文献   

15.
Protein hydrophobic interaction has been considered the most important factor dominating protein folding, aggregation, gelling, self-assembly, adhesion, and cohesion properties. In this paper, morphology and phase separation of hydrophobic clusters, networks, and aggregates of soy globular protein polymers, induced by using a reducing agent (NaHSO3), are studied using microscopic instruments. The morphology and phase separation of these hydrophobic clusters are sensitive to protein structure and composition, pH, and ionic-strength (I(m)). Most of the clusters are in spherical-shape architecture and mainly consist of hydrophobic polypeptides. Rod-shape clusters were also observed at higher ionic strength, and mainly consist of hydrophilic polypeptides. The ratio of hydrophobic/hydrophilic (HB/HL) polypeptides is important to facilitate the formation of clusters in an environment with a certain pH value and ionic strength. At HB/HL 0.8, uniform spherical clusters were observed and diameters ranged from 30 to 70 nm. At HB/HL <0.8, large spherical clusters were formed with diameters ranging from 100 to 1,000 nm, and at HB/HL >or=1.8, large hydrophobic aggregates formed, and size of aggregates can be up to 2 500 nm. When solid content increased from 3% to 38%, at I(m) or= 0.115 mol x L(-1), HB/HL ratio >or=1.8, the large aggregates became very cohesive and viscoelastic. Clear phase separation was observed during curing between hydrophobic and hydrophilic protein polymers. Phase-separation degree increased as HB/HL ratio increased.  相似文献   

16.
The strain hardening behavior of model polymer glasses is studied with simulations over a wide range of entanglement densities, temperatures, strain rates, and chain lengths. Entangled polymers deform affinely at scales larger than the entanglement length as assumed in entropic network models of strain hardening. The dependence of strain hardening on strain and entanglement density is also consistent with these models, but the temperature dependence has the opposite trend. The dependence on temperature, rate, and interaction strength can instead be understood as reflecting changes in the flow stress. Microscopic analysis of local rearrangements and the primitive paths between entanglements is used to test models of strain hardening. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3487–3500, 2006  相似文献   

17.
A simple model for the phase behaviour of a globular protein and a flexible polymer in an aqueous medium is described, in which both the compact feature of the protein and the flexble feature of the polymer have been included. The phase diagrams calculated by using the model suggest that for a given protein, the behaviour depends strongly on the polymer molecular weight. Fluid-fluid-solid three-phase and fluid-fluid two-phase equilibria can be found only when the polymer molecular weight is sufficiently high; otherwise, the only two-phase region in the phase diagram is a fluid-solid two-phase region.  相似文献   

18.
19.
This study is concerned with the temperature and molecular weight dependence of the strain-hardening behavior of polycarbonate. It is shown that the strain-hardening modulus reduces with increasing temperature and decreasing molecular weight. This result is interpreted in terms of temperature accelerated relaxation of the entanglement network. Moreover, it is shown that frozen-in orientations, induced by homogeneous deformations above the glass transition temperature, lead to anisotropic yield behavior that can be fully rationalized (and modelled) in terms of a superimposed stress contribution of the prestrained network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2041–2049, 2004  相似文献   

20.
Internal motions of folded proteins have been assumed to be ergodic, i.e., that the dynamics of a single protein molecule averaged over a very long time resembles that of an ensemble. Here, by performing single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular dynamics (MD) simulations of a multi-domain globular protein, cytoplasmic protein-tyrosine phosphatase (SHP2), we demonstrate that the functional inter-domain motion is observationally non-ergodic over the time spans 10−12 to 10−7 s and 10−1 to 102 s. The difference between observational non-ergodicity and simple non-convergence is discussed. In comparison, a single-strand DNA of similar size behaves ergodically with an energy landscape resembling a one-dimensional linear chain. The observed non-ergodicity results from the hierarchical connectivity of the high-dimensional energy landscape of the protein molecule. As the characteristic time for the protein to conduct its dephosphorylation function is ∼10 s, our findings suggest that, due to the non-ergodicity, individual, seemingly identical protein molecules can be dynamically and functionally different.

Internal motions of folded proteins have been assumed to be ergodic, i.e., that the dynamics of a single protein molecule averaged over a very long time resembles that of an ensemble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号