首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper is concerned with porfolio optimization problems with integer constraints. Such problems include, among others mean-risk problems with nonconvex transaction cost, minimal transaction unit constraints and cardinality constraints on the number of assets in a portfolio. These problems, though practically very important have been considered intractable because we have to solve nonlinear integer programming problems for which there exists no efficient algorithms. We will show that these problems can now be solved by the state- of-the-art integer programming methodologies if we use absolute deviation as the measure of risk.  相似文献   

3.
We present a branch-and-cut algorithm to solve capacitated network design problems. Given a capacitated network and point-to-point traffic demands, the objective is to install more capacity on the edges of the network and route traffic simultaneously, so that the overall cost is minimized. We study a mixed-integer programming formulation of the problem and identify some new facet defining inequalities. These inequalities, together with other known combinatorial and mixed-integer rounding inequalities, are used as cutting planes. To choose the branching variable, we use a new rule called “knapsack branching”. We also report on our computational experience using real-life data. Received April 29, 1997 / Revised version received January 9, 1999? Published online June 28, 1999  相似文献   

4.
 We are given a unique rectangular piece of stock material S, with height H and width W, and a list of m rectangular shapes to be cut from S. Each shape's type i (i = 1, ..., m) is characterized by a height , a width , a profit , and an upper bound ub i indicating the maximum number of items of type i which can be cut. We refer to the Two-Dimensional Knapsack (TDK) as the problem of determining a cutting pattern of S maximizing the sum of the profits of the cut items. In particular, we consider the classical variant of TDK in which the maximum number of cuts allowed to obtain each item is fixed to 2, and we refer to this problem as 2-staged TDK (2TDK). For the 2TDK problem we present two new Integer Linear Programming models, we discuss their properties, and we compare them with other formulations in terms of the LP bound they provide. Finally, both models are computationally tested within a standard branch-and-bound framework on a large set of instances from the literature by reinforcing them with the addition of linear inequalities to eliminate symmetries. Received: October 17, 2000 / Accepted: December 19, 2001 Published online: September 27, 2002 Key words. packing – cutting – integer linear programming  相似文献   

5.
The availability of an LP routine where we can add constraints and reoptimize, makes it possible to adopt an integer programming approach to the travelling-salesman problem.Starting with some of the constraints that define the problem we use either a branching process or a cutting planes routine to eliminate fractional solutions. We then test the resulting integer solution against feasibility and if necessary we generate the violated constraints and reoptimize until a genuine feasible solution is achieved.Usually only a small number of the omitted constraints is generated.The generality of the method and the modest solution times achieved leads us to believe that such an LP approach to other combinatorial problems deserves further consideration.  相似文献   

6.
7.
The process of designing new industrial products is in many cases solely based on the intuition and experience of the responsible design engineer. The aid of computers is restricted to visualization and manual manipulation tools. We demonstrate that the design process for conduits, which are made out of sheet metal plates, can be supported by mathematical optimization models and solution techniques, leading to challenging optimization problems. The design goal is to find a topology that consists of several channels with a given cross section area using a minimum amount of sheet metal and, at the same time, maximizing its stiffness. We consider a mixed integer linear programming model to describe the topology of two dimensional slices of a three dimensional sheet metal product. We give different model formulations, based on cuts and on multicommodity flows. Numerical results for various test instances are presented.  相似文献   

8.
9.
In this paper, several nonexistence results on generalized bent functions \(f:\mathbb {Z}_{2}^{n} \rightarrow \mathbb {Z}_{m}\) are presented by using the knowledge on cyclotomic number fields and their imaginary quadratic subfields.  相似文献   

10.
It is well known that mixed-integer formulations can be used tomodel important classes of nonconvex functions, such as fixed-charge functions and linear economy-of-scale cost functions. The purpose of this paper is to formulate a rigorous definition of a mixed-integer model of a given function and to study the properties of the functions that can be so modelled. An interesting byproduct of this approach is the identification of a simple class of functions that cannot be modelled by computer-representable mixed-integer formulations, even though mixed-integer models based on the use of a single arbitrary irrational constant are available for this class.This research was sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462.  相似文献   

11.
The decision problem considered in this paper is a hierarchical workforce scheduling problem in which a higher qualified worker can substitute for a lower qualified one, but not vice versa, labour requirements may vary, and each worker must receive n off-days a week. Within this context, five mathematical models are discussed. The first two of these five models are previously published. Both of them are for the case where the work is indivisible. The remaining three models are developed by the authors of this paper. One of these new models is for the case where the work is indivisible and the other two are for the case where the work is divisible. The three new models are proposed with the purpose of removing the shortcomings of the previously published two models. All of the five models are applied on the same illustrative example. Additionally, a total of 108 test problems are solved within the context of two computational experiments.  相似文献   

12.
In this paper we explore the relations between the standard dual problem of a convex generalized fractional programming problem and the partial dual problem proposed by Barros et al. (1994). Taking into account the similarities between these dual problems and using basic duality results we propose a new algorithm to directly solve the standard dual of a convex generalized fractional programming problem, and hence the original primal problem, if strong duality holds. This new algorithm works in a similar way as the algorithm proposed in Barros et al. (1994) to solve the partial dual problem. Although the convergence rates of both algorithms are similar, the new algorithm requires slightly more restrictive assumptions to ensure a superlinear convergence rate. An important characteristic of the new algorithm is that it extends to the nonlinear case the Dinkelbach-type algorithm of Crouzeix et al. (1985) applied to the standard dual problem of a generalized linear fractional program. Moreover, the general duality results derived for the nonlinear case, yield an alternative way to derive the standard dual of a generalized linear fractional program. The numerical results, in case of quadratic-linear ratios and linear constraints, show that solving the standard dual via the new algorithm is in most cases more efficient than applying directly the Dinkelbach-type algorithm to the original generalized fractional programming problem. However, the numerical results also indicate that solving the alternative dual (Barros et al., 1994) is in general more efficient than solving the standard dual.This research was carried out at the Econometric Institute, Erasmus University Rotterdam, the Netherlands and was supported by the Tinbergen Institute Rotterdam  相似文献   

13.
14.
The approach of generalized geometric programming is extended to develop a dual version of trace optimization problems. As an application we present a new and simple derivation of the Massieu-Planck extremum principle for quantum statistical equilibrium ensembles.  相似文献   

15.
We study solution approaches for the design of reliably connected networks. Specifically, given a network with arcs that may fail at random, the goal is to select a minimum cost subset of arcs such the probability that a connectivity requirement is satisfied is at least $1 - \epsilon $ , where $\epsilon $ is a risk tolerance. We consider two types of connectivity requirements. We first study the problem of requiring an $s$ - $t$ path to exist with high probability in a directed graph. Then we consider undirected graphs, where we require the graph to be fully connected with high probability. We model each problem as a stochastic integer program with a joint chance constraint, and present two formulations that can be solved by a branch-and-cut algorithm. The first formulation uses binary variables to represent whether or not the connectivity requirement is satisfied in each scenario of arc failures and is based on inequalities derived from graph cuts in individual scenarios. We derive additional valid inequalities for this formulation and study their facet-inducing properties. The second formulation is based on probabilistic graph cuts, an extension of graph cuts to graphs with random arc failures. Inequalities corresponding to probabilistic graph cuts are sufficient to define the set of feasible solutions and violated inequalities in this class can be found efficiently at integer solutions, allowing this formulation to be solved by a branch-and-cut algorithm. Computational results demonstrate that the approaches can effectively solve instances on large graphs with many failure scenarios. In addition, we demonstrate that, by varying the risk tolerance, our model yields a rich set of solutions on the efficient frontier of cost and reliability.  相似文献   

16.
One of the most promising solutions to deal with huge data traffic demands in large communication networks is given by flexible optical networking, in particular the flexible grid (flexgrid) technology specified in the ITU-T standard G.694.1. In this specification, the frequency spectrum of an optical fiber link is divided into narrow frequency slots. Any sequence of consecutive slots can be used as a simple channel, and such a channel can be switched in the network nodes to create a lightpath. In this kind of networks, the problem of establishing lightpaths for a set of end-to-end demands that compete for spectrum resources is called the routing and spectrum allocation problem (RSA). Due to its relevance, this problem has been intensively studied in the last couple of years. It has been shown to be NP-hard (Christodoulopoulos et al. in IEEE J Lightw Technol 29(9):1354–1366, 2011; Wang et al. in IEEE J Opt Commun Netw 4(11):906–917, 2012) and several models and formulations have been proposed, leading to different solution approaches. In this work, we explore integer programming models for RSA, analyzing their effectiveness over known instances. We resort to several modeling techniques, to find natural formulations of this problem. Since integer programming techniques are known to provide successful practical approaches for several combinatorial optimization problems, the aim of this work is to explore a similar approach for RSA.  相似文献   

17.
The purpose of this paper is to show that any generalized network problem whose matrix does not have full row rank can be transformed into an equivalent pure network problem and to give a constructive method for doing this.  相似文献   

18.
Mathematical programming discriminant analysis models must be normalised to prevent the generation of discriminant functions in which the variable coefficients and the constant term are zero. This normalisation requirement can cause difficulties, and unlike statistical discriminant analysis, variables cannot be selected in a computationally efficient way with mathematical programming discriminant analysis models. Two new integer programming normalisations are proposed in this paper. In the first, binary variables are used to represent the constant term, but with this normalisation functions with a zero constant term cannot be generated and the variable coefficients are not invariant under origin shifts. These limitations are overcome by using integer programming methods to constrain the sum of the absolute values of the variable coefficients to a constant. These new normalisations are extended to allow variable selection with mathematical programming discriminant analysis models. The use of these new applications of integer programming is illustrated using published data.  相似文献   

19.
The traveling car renter problem (CaRS) is an extension of the classical traveling salesman problem (TSP) where different cars are available for use during the salesman’s tour. In this study we present three integer programming formulations for CaRS, of which two have quadratic objective functions and the other has quadratic constraints. The first model with a quadratic objective function is grounded on the TSP interpreted as a special case of the quadratic assignment problem in which the assignment variables refer to visitation orders. The second model with a quadratic objective function is based on the Gavish and Grave’s formulation for the TSP. The model with quadratic constraints is based on the Dantzig–Fulkerson–Johnson’s formulation for the TSP. The formulations are linearized and implemented in two solvers. An experiment with 50 instances is reported.  相似文献   

20.
In this paper, we extend the classical multiple traveling salesman problem (mTSP) by imposing a minimal number of nodes that a traveler must visit as a side condition. We consider single and multidepot cases and propose integer linear programming formulations for both, with new bounding and subtour elimination constraints. We show that several variations of the multiple salesman problem can be modeled in a similar manner. Computational analysis shows that the solution of the multidepot mTSP with the proposed formulation is significantly superior to previous approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号