首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Based on the NEWUOA algorithm, a new derivative-free algorithm is developed, named LCOBYQA. The main aim of the algorithm is to find a minimizer $x^{*} \in\mathbb{R}^{n}$ of a non-linear function, whose derivatives are unavailable, subject to linear inequality constraints. The algorithm is based on the model of the given function constructed from a set of interpolation points. LCOBYQA is iterative, at each iteration it constructs a quadratic approximation (model) of the objective function that satisfies interpolation conditions, and leaves some freedom in the model. The remaining freedom is resolved by minimizing the Frobenius norm of the change to the second derivative matrix of the model. The model is then minimized by a trust-region subproblem using the conjugate gradient method for a new iterate. At times the new iterate is found from a model iteration, designed to improve the geometry of the interpolation points. Numerical results are presented which show that LCOBYQA works well and is very competing against available model-based derivative-free algorithms.  相似文献   

3.
In this paper, we modify a derivative-free line search algorithm (DFL) proposed in the Ref. (Liuzzi et al. SIAM J Optimiz 20(5):2614–2635, 2010) to minimize a continuously differentiable function of box constrained variables or unconstrained variables with nonlinear constraints. The first-order derivatives of the objective function and of the constraints are assumed to be neither calculated nor explicitly approximated. Different line-searches are used for box-constrained variables and unconstrained variables. Accordingly the convergence to stationary points is proved. The computational behavior of the method has been evaluated on a set of test problems. The performance and data profiles are used to compare with DFL.  相似文献   

4.
We study derivative-free constrained optimization problems and propose a trust-region method that builds linear or quadratic models around the best feasible and around the best infeasible solutions found so far. These models are optimized within a trust region, and the progressive barrier methodology handles the constraints by progressively pushing the infeasible solutions toward the feasible domain. Computational experiments on 40 smooth constrained problems indicate that the proposed method is competitive with COBYLA, and experiments on two nonsmooth multidisciplinary optimization problems from mechanical engineering show that it can be competitive with the NOMAD software.  相似文献   

5.
Hospitals have been challenged in recent years to deliver high quality care with limited resources. Given the pressure to contain costs, developing procedures for optimal resource allocation becomes more and more critical in this context. Indeed, under/overutilization of emergency room and ward resources can either compromise a hospital’s ability to provide the best possible care, or result in precious funding going toward underutilized resources. Simulation-based optimization tools then help facilitating the planning and management of hospital services, by maximizing/minimizing some specific indices (e.g. net profit) subject to given clinical and economical constraints. In this work, we develop a simulation-based optimization approach for the resource planning of a specific hospital ward. At each step, we first consider a suitably chosen resource setting and evaluate both efficiency and satisfaction of the restrictions by means of a discrete-event simulation model. Then, taking into account the information obtained by the simulation process, we use a derivative-free optimization algorithm to modify the given setting. We report results for a real-world problem coming from the obstetrics ward of an Italian hospital showing both the effectiveness and the efficiency of the proposed approach.  相似文献   

6.
A filled function method for constrained global optimization   总被引:1,自引:0,他引:1  
In this paper, a filled function method for solving constrained global optimization problems is proposed. A filled function is proposed for escaping the current local minimizer of a constrained global optimization problem by combining the idea of filled function in unconstrained global optimization and the idea of penalty function in constrained optimization. Then a filled function method for obtaining a global minimizer or an approximate global minimizer of the constrained global optimization problem is presented. Some numerical results demonstrate the efficiency of this global optimization method for solving constrained global optimization problems.  相似文献   

7.
A DERIVATIVE-FREE ALGORITHM FOR UNCONSTRAINED OPTIMIZATION   总被引:1,自引:0,他引:1  
In this paper a hybrid algorithm which combines the pattern search method and the genetic algorithm for unconstrained optimization is presented. The algorithm is a deterministic pattern search algorithm,but in the search step of pattern search algorithm,the trial points are produced by a way like the genetic algorithm. At each iterate, by reduplication,crossover and mutation, a finite set of points can be used. In theory,the algorithm is globally convergent. The most stir is the numerical results showing that it can find the global minimizer for some problems ,which other pattern search algorithms don't bear.  相似文献   

8.
Simulated annealing for constrained global optimization   总被引:10,自引:0,他引:10  
Hide-and-Seek is a powerful yet simple and easily implemented continuous simulated annealing algorithm for finding the maximum of a continuous function over an arbitrary closed, bounded and full-dimensional body. The function may be nondifferentiable and the feasible region may be nonconvex or even disconnected. The algorithm begins with any feasible interior point. In each iteration it generates a candidate successor point by generating a uniformly distributed point along a direction chosen at random from the current iteration point. In contrast to the discrete case, a single step of this algorithm may generateany point in the feasible region as a candidate point. The candidate point is then accepted as the next iteration point according to the Metropolis criterion parametrized by anadaptive cooling schedule. Again in contrast to discrete simulated annealing, the sequence of iteration points converges in probability to a global optimum regardless of how rapidly the temperatures converge to zero. Empirical comparisons with other algorithms suggest competitive performance by Hide-and-Seek.This material is based on work supported by a NATO Collaborative Research Grant, no. 0119/89.  相似文献   

9.
Global optimization is a field of mathematical programming dealing with finding global (absolute) minima of multi-dimensional multiextremal functions. Problems of this kind where the objective function is non-differentiable, satisfies the Lipschitz condition with an unknown Lipschitz constant, and is given as a “black-box” are very often encountered in engineering optimization applications. Due to the presence of multiple local minima and the absence of differentiability, traditional optimization techniques using gradients and working with problems having only one minimum cannot be applied in this case. These real-life applied problems are attacked here by employing one of the mostly abstract mathematical objects—space-filling curves. A practical derivative-free deterministic method reducing the dimensionality of the problem by using space-filling curves and working simultaneously with all possible estimates of Lipschitz and Hölder constants is proposed. A smart adaptive balancing of local and global information collected during the search is performed at each iteration. Conditions ensuring convergence of the new method to the global minima are established. Results of numerical experiments on 1000 randomly generated test functions show a clear superiority of the new method w.r.t. the popular method DIRECT and other competitors.  相似文献   

10.
An interval algorithm for constrained global optimization   总被引:7,自引:0,他引:7  
An interval algorithm for bounding the solutions of a constrained global optimization problem is described. The problem functions are assumed only to be continuous. It is shown how the computational cost of bounding a set which satisfies equality constraints can often be reduced if the equality constraint functions are assumed to be continuously differentiable. Numerical results are presented.  相似文献   

11.
Interval analysis is a powerful tool which allows to design branch-and-bound algorithms able to solve many global optimization problems. In this paper we present new adaptive multisection rules which enable the algorithm to choose the proper multisection type depending on simple heuristic decision rules. Moreover, for the selection of the next box to be subdivided, we investigate new criteria. Both the adaptive multisection and the subinterval selection rules seem to be specially suitable for being used in inequality constrained global optimization problems. The usefulness of these new techniques is shown by computational studies.  相似文献   

12.
A new efficient interval partitioning approach to solve constrained global optimization problems is proposed. This involves a new parallel subdivision direction selection method as well as an adaptive tree search. The latter explores nodes (intervals in variable domains) using a restricted hybrid depth-first and best-first branching strategy. This hybrid approach is also used for activating local search to identify feasible stationary points. The new tree search management technique results in improved performance across standard solution and computational indicators when compared to previously proposed techniques. On the other hand, the new parallel subdivision direction selection rule detects infeasible and suboptimal boxes earlier than existing rules, and this contributes to performance by enabling earlier reliable deletion of such subintervals from the search space.  相似文献   

13.
A new filled function with one parameter is proposed for solving constrained global optimization problems without the coercive condition, in which the filled function contains neither exponential term nor fractional term and is easy to be calculated. A corresponding filled function algorithm is established based on analysis of the properties of the filled function. At last, we perform numerical experiments on some typical test problems using the algorithm and the detailed numerical results show that the algorithm is effective.  相似文献   

14.
We propose a differential evolution-based algorithm for constrained global optimization. Although differential evolution has been used as the underlying global solver, central to our approach is the penalty function that we introduce. The adaptive nature of the penalty function makes the results of the algorithm mostly insensitive to low values of the penalty parameter. We have also demonstrated both empirically and theoretically that the high value of the penalty parameter is detrimental to convergence, specially for functions with multiple local minimizers. Hence, the penalty function can dispense with the penalty parameter. We have extensively tested our penalty function-based DE algorithm on a set of 24 benchmark test problems. Results obtained are compared with those of some recent algorithms.  相似文献   

15.
讨论了具有一般约束的全局优化问题,给出该问题的一个随机搜索算法,证明了该算法依概率1收敛到问题的全局最优解.数值结果显示该方法是有效的.  相似文献   

16.
In the field of global optimization many efforts have been devoted to solve unconstrained global optimization problems. The aim of this paper is to show that unconstrained global optimization methods can be used also for solving constrained optimization problems, by resorting to an exact penalty approach. In particular, we make use of a non-differentiable exact penalty function ${P_q(x;\varepsilon)}$ . We show that, under weak assumptions, there exists a threshold value ${\bar \varepsilon >0 }$ of the penalty parameter ${\varepsilon}$ such that, for any ${\varepsilon \in (0, \bar \varepsilon]}$ , any global minimizer of P q is a global solution of the related constrained problem and conversely. On these bases, we describe an algorithm that, by combining an unconstrained global minimization technique for minimizing P q for given values of the penalty parameter ${\varepsilon}$ and an automatic updating of ${\varepsilon}$ that occurs only a finite number of times, produces a sequence {x k } such that any limit point of the sequence is a global solution of the related constrained problem. In the algorithm any efficient unconstrained global minimization technique can be used. In particular, we adopt an improved version of the DIRECT algorithm. Some numerical experimentation confirms the effectiveness of the approach.  相似文献   

17.
18.
Obtaining guaranteed lower bounds for problems with unknown algebraic form has been a major challenge in derivative-free optimization. In this work, we pre  相似文献   

19.
A new approach to the constrained function optimization problem is presented. It is shown that the ordinary Lagrange multiplier method and the penalty function method may be generalized and combined, and the new concept ofmultiplier function is introduced. The problem may then be converted into an unconstrained well-conditioned optimization problem. Methods for numerical solution are discussed, and new algorithms are derived.The author wishes to express his gratitude to Professor K. J. Åström for his encouragement and assistance and to Professor P. Falb for valuable suggested improvements. This work was supported by the Swedish Board for Technical Development, Contract No. 70-337/U270.  相似文献   

20.
In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search phase of pattern search we apply a particle swarm scheme to globally explore the possible nonconvexity of the objective function. Our extensive numerical experiments showed that the resulting algorithm is highly competitive with other global optimization methods also based on function values. Support for Luís N. Vicente was provided by Centro de Matemática da Universidade de Coimbra and by FCT under grant POCI/MAT/59442/2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号