首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   

2.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   

3.
A new approach to directly monitor space charge induced effects due to high concentrations of efficiently ionized elements in inductively coupled plasma mass spectrometry (ICP-MS) is described. The broadening of ion clouds produced from individual, monodisperse drops of sample is measured by using time-resolved ICP-MS. The extent of broadening due to high concentrations of Pb in the sample is related inversely to the analyte mass. For the lightest analyte investigated, Li+, the relative width of the time-resolved analyte peak increases and then shows a dip in the center as the Pb concentration is increased to 500 and then 1500 µg/mL. The initial results of experiments that investigated chemical matrix effects as a function of concomitant species concentration, analyte mass, and sampling location in ICP-MS are consistent with space-charge effects.  相似文献   

4.
A range of organic solvents (ethanol, isopropanol and acetone) has been investigated as alternatives to acetonitrile and methanol when used in conjunction with Corona Charged Aerosol Detection (Corona CAD). These solvents have been evaluated with regard to their effect on the response of the Corona CAD. Three dimensional response surfaces were constructed using raw data showing the relationship between detector response, analyte concentration and percentage of organic solvent in the mobile phase, using sucralose or quinine as the test analyte. The detector response was non-linear in terms of analyte concentration for all solvents tested. However, detector response varied in an approximately linear manner with percentage of organic solvent over the range 0–40% for ethanol or isopropanol and 0–80% for acetone and methanol. The chromatographic performance of the various solvents when used as aqueous–organic mobile phases was evaluated for isocratic and gradient separations of sugars and sugar alcohols by hydrophilic interaction liquid chromatography (HILIC) using an Asahipak NH2P-504E column coupled with Corona CAD detection. It was found that whilst acetonitrile provided the highest column efficiencies and lowest detection limits of the solvents studied, acetone also performed well and could be used to resolve the same number of analytes as was possible with acetonitrile. Typical efficiencies and detection limits of 5330 plates m−1 and 1.25 μg mL−1, respectively, were achieved when acetone was used as the organic modifier. Acetone was utilised successfully as an organic modifier in the HILIC separation of carbohydrates in a beer sample and also for a partially digested dextran sample.  相似文献   

5.
In this work the effect in secondary ion mass spectrometry (SIMS) of several frequently used matrix‐assisted laser desorption/ionisation (MALDI) matrices on the secondary ion intensities of low molecular weight (m/z 400–800) organic dyes and a pharmaceutical is tested. Matrix (10?1 M) and analyte (10?2 M) solutions were made in methanol. Mixtures with several concentration ratios were prepared from these solutions and spincoated on Si substrates prior to time‐of‐flight (TOF)‐SIMS analysis. In some cases the presence of the MALDI matrices caused a considerable increase in the positive secondary (protonated) molecular ion signals. Enhancements of a factor of 20 and more were recorded. Generally, of the matrices used, 2,5‐dihydroxybenzoic acid and 2,4,6‐trihydroxyacetophenone brought about the highest intensity increases. It was also shown that matrix‐enhanced (ME‐)SIMS is capable of lowering the detection limits for molecule ions. However, the enhancement effect is strongly influenced by the analyte/matrix combination and its concentration ratio. As a result, finding an optimal analyte/matrix mixture can be a very time‐consuming process. Mostly, the presence of the matrices causes changes in the relative ion intensities in the TOF‐S‐SIMS spectra. Compared to the spectra recorded from samples without matrices, only a few additional peaks, such as signals that originate directly from the applied matrix or adduct ions, are observed in the mass spectra. Sometimes molecule ions and some characteristic fragments at high m/z values, that cannot be recorded without matrix, do appear in the spectrum when a matrix is present. In the negative mode no enhancement effect is observed on applying the studied MALDI matrices. The results obtained from samples treated with MALDI matrices are also compared to SIMS results for the same samples after Ag and Au metallisation (MetA‐SIMS). For three of the four tested compounds Au MetA‐SIMS resulted in higher ion yields than ME‐SIMS. For both techniques possible mechanisms that can account for the enhancement effect are proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A new inductively coupled plasma mass spectrometer with an enlarged sampling orifice (1.31-mm dia.) and an offset ion lens yields very low levels of many troublesome polyatomic ions such as ArO+, ArN+, Ar2 +, ClO+, and ArCl+. The signals from refractory metal oxide ions are ≈ 1% of the corresponding metal ion signals, which is typical of most ICP-MS devices. Grounding the first electrode of the ion lens greatly reduces the severity of matrix effects to <- 20% loss in signal for Co+, Y+, or Cs+ in the presence of 10 mM Sr, Tm, or Pb. This latter lens setting causes only a modest loss (30%) in sensitivity for analyte elements compared to the best sensitivity obtainable by biasing the first lens. Alternatively, matrix effects can also be mitigated by readjusting the voltage applied to the first lens with the matrix present.  相似文献   

7.
The effect of signal enhancement of elements with ionization potentials in the range from 9 to 11 eV by carbon-containing compounds is a well-known phenomenon in inductively coupled plasma mass spectrometry (ICPMS). It has traditionally been exploited through the addition of organic solvents to the sample matrix or to the mobile phase to improve sensitivity. In the present work, aqueous solutions of volatile carbon compounds (acetone, methanol and acetic acid) were directly introduced into the thermostatted spray chamber rather than being added to the sample matrix. It is presumed that no aerosol is produced from these solutions and only vapors of organic compounds are swept into the plasma together with the sample aerosol. When a 0.40 mol l 1 aqueous solution of acetone was introduced directly into the spray chamber, the signals for arsenic and selenium were enhanced by a factor of 4.2. The usefulness of this approach was demonstrated through the achievement of lower instrumental detection limits for selenium at m/z 82 (0.1 ng ml 1) compared to the system without direct introduction of volatile carbon compounds (0.5 ng ml 1). The method was successfully applied in the determination of traces of selenium in natural water, urine and bovine liver reference material.  相似文献   

8.
The formation of molecular and cluster ions of different inorganic materials in plasma mass spectrometry – spark source mass spectrometry (SSMS), radiofrequency glow discharge mass spectrometry (rf GDMS), laser ionization mass spectrometry (LIMS), inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) – was investigated and compared. Similar abundance distributions of cluster ions were observed for a graphite sample, for boron nitride/ graphite and for metal oxide/graphite mixtures using different plasma mass spectrometric methods. A correlation of intensities of metal argide ions in ICP-MS with their bond dissociation energies was used to estimate unknown dissociation energies of molecular ionic species. For the elements of the 2nd or 3rd period in the periodic table, the intensities of most argon molecular ions (ArX+) measured by ICP-MS rise with increasing atomic number in a similar manner to the theoretically calculated bond dissociation energies of argon molecular ions.  相似文献   

9.
Reported are the effects of easily ionizable concomitant elements on non-spectroscopic interferences in ICP-MS. Analyte ion suppression was studied for 7Li, 11B, 58Ni, 45Sc, 89Y and 205Tl in the presence of concomitant elements spanning a mass range from 23 (Na) to 207 (Pb) dallons.For the analytes studied, it was found that the greater the atomic mass of the concomitant element, the greater was the analyte ion count rate suppression. For a given set of experimental conditions, the greater the atomic mass of the analyte, the lower was its susceptibility to ion count rate suppression by any concomitant element.The severity of non-spectroscopic interferences decreased as the sampler orifice was positioned further away from the center of the plasma and also as the sampling depth was increased. Dilution of a solution containing a given molar ratio of concomitant to analyte reduced the extent of analyte ion suppression.Non-spectroscopic interferences in ICP-MS can be attributed to ambipolar diffusion effects in the plasma that result from the presence of easily ionizable concomitant elements.  相似文献   

10.
目的 研究有机化合物对电感耦合等离子体质谱法(ICP-MS)测定食品中总砷的影响,分析总结一般规律,为食品中总砷的准确测定提供理论依据。方法 研究了甲醇和乙醇等14种有机化合物对ICP-MS测定砷的动能歧视模式(KED)信号值和动态反应模式(DRC)信号值的影响,通过分析各有机化合物的电离能、极性和溶解度等性质,推测其在ICP-MS测定体系中对砷响应信号值增敏或者抑制的可能机理。结果 有机化合物对ICP-MS的KED模式测定砷离子As+的信号值有增敏效应,对DRC模式测定氧化砷离子AsO+信号值的影响小于KED模式测定As+的信号值,而且过程也更为复杂。相反,氮氧化物会减弱As+和AsO+的信号值。锗、铟等内标元素原子与砷原子在等离子体中电离行为和灵敏度的差异,使得内标元素校准砷测定信号的漂移受到干扰。结论 推测有机化合物影响ICP-MS测定砷响应信号值的可能机理是:有机化合物和氮氧化物经电离或裂解之后分别生成碳离子或多原子碳离子和氮氧离子或氮氧基团,碳离子或多原子碳离子会与砷原子发生电荷转移反应,增强As+或AsO+的信号值,同时有机化合物也可能会与As+竞争氧气而降低AsO+的信号值,而具有强电负性的氮氧基团可能会与As+和AsO+发生电荷转移反应而减弱其信号值。有机化合物对砷的ICP-MS响应信号值的影响可能是受到有机化合物电离能、溶解度、极性和分子结构等综合因素的结果。  相似文献   

11.
电感耦合等离子体质谱(Inductively coupled plasma mass spectrometry,ICP-MS)是痕量元素分析中最常用的检测技术,尽管ICP-MS在元素分析中表现出诸多优势,但其在检测复杂基质样品时,仍会遇到许多问题。复杂基质所引起的基质效应通常会导致分析物信号的抑制或者增强。基质效应影响程度取决于基质成分的绝对浓度,还与基质的种类、分析物的物理和化学性质以及仪器条件有关。该文介绍了ICP-MS中几种常见的基质效应及其影响因素,包括元素基质、含碳基质、酸基质和仪器条件等,探究了基质效应产生的可能原因,对国内外去除基质效应的方法,如样品前处理方法、样品引入系统、优化仪器参数和校准法等进行了系统的归纳和总结,并对基质效应的研究进行了展望。  相似文献   

12.
The analytical procedure for the determination of Ba and rare earth elements in rocks and minerals by ICP-MS is described. The yield of mono-oxide and hydroxide ions of Ba and rare earth elements, and chloride ions of Ba has been determined. A Microsoft Excel spreadsheet template has been written to calculate the expected peak intensities for all possible analyte species (M+, MO+, MOH+ and MCl+) as a function of the mass number. The degree of interferences of different analyte isotopes is estimated and interferent equivalent concentrations are given for elements, for which no isotope free from interferences is available. The method is applied to the analysis of the four Geo-Reference samples AC-E, GSP-1, G-2 and AGV-1; the analytical accuracy is better than ±10% for most of the elements when compared with recommended reference values.  相似文献   

13.
The analytical behaviour of an electrothermal vaporization (ETV) device for the introduction of mineral acid solutions in inductively coupled plasma mass spectrometry (ICP-MS) was evaluated. Water, nitric acid, hydrochloric acid, perchloric acid and sulphuric acid in concentrations within the 0.05–1.0 mol l−1 range were studied. For all the acids tested, increasing the acid concentration increases the ion signal and deteriorates the precision. The magnitude of the signal enhancement depends on the analyte and on the acid considered. Acid solutions give rise to ion signals that are between 2 and 10 times higher than those with water. Among the acids tested, sulphuric acid provides the highest signals. The addition of palladium reduces matrix effects due to the acids and increases the signal in ETV ICP-MS. In comparison with conventional sample nebulization (CS), the ETV sample introduction system provides higher sensitivities (between 2 and 20 times higher) at the same acid concentration. The magnitude of this improvement is similar to that obtained with a microwave desolvation system (MWDS). The ETV sample introduction system gives rise to the lowest background signals from matrix-induced species. Due to this fact, the limits of detection (LODs) obtained for the isotopes affected by any interference are lower for ETV sample introduction than those obtained with the CS and the MWDS. For the isotopes that do not suffer from matrix-induced spectral interferences, the ETV gives rise to LODs higher than those obtained with the CS. For these isotopes the lowest LODs are obtained with MWDS.  相似文献   

14.
Liu R  Xing Z  Lv Y  Zhang S  Zhang X 《Talanta》2010,83(1):48-54
A sensitive sandwich type immunoassay has been proposed with the detection by inductively coupled plasma mass spectrometry (ICP-MS) in a single particle mode (time resolved analysis). The signal induced by the flash of ions (197Au+) due to the ionization of single Au-nanoparticle (Au-NP) label in the plasma torch can be measured by the mass spectrometer. The frequency of the transient signals is proportional to the concentration of Au-NPs labels. Characteristics of the signals obtained from Au-NPs of 20, 45 and 80 nm in diameters were discussed. The analytical figures for the determination of Au-labeled IgG using ICP-MS in conventional integral mode and single particle mode were compared in detail. Rabbit-anti-human IgG was used as a model analyte in the sandwich immunoassay. A detection limit (3σ) of 0.1 ng mL−1 was obtained for rabbit-anti-human IgG after immunoreactions, with a linear range of 0.3-10 ng mL−1 and a RSD of 8.1% (2.0 ng mL−1). Finally, the proposed method was successfully applied to spiked rabbit-anti-human IgG samples and rabbit-anti-human serum samples. The method resulted to be a highly sensitive ICP-MS based sandwich type immunoassay.  相似文献   

15.
微量进样/ICP-MS体系中的基体效应研究   总被引:5,自引:0,他引:5  
考察了自行组装的高效微量进样系统在22μL/min低提升量下电感耦合等离子体质谱的基体效应.质量数和电离电位不同的基体元素质量浓度为2g/L时,低质量数分析元素受到一定的干扰,而对于高质量数分析元素,其信号几乎不受基体元素干扰,归一化信号值接近1.对于体积分数为5%的有机基体样品溶液,此微量高效雾化系统测得的归一化信号值多接近0.5.实际样品中常见的基体元素K,Na,Ca和Mg质量浓度低于500mg/L,以及乙醇和乙酸体积分数小于1%时,微量进样系统均不产生显著干扰.  相似文献   

16.
In this study we developed a dried-droplet method for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method provides accurate and precise results when building calibration curves and determining elements of interest in real liquid samples. After placing just 1 μL of a liquid standard solution or a real sample onto the filter surface and then converting the solution into a very small, thin dry spot, the sample could be applied as an analytical subject for LA. To demonstrate the feasibility of this proposed method, we used LA-ICP-MS and conventional ICP-MS to determine the levels of 13 elements (Li, V, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb) in five water samples. The correlation coefficients obtained from the various calibration curves ranged from 0.9920 (205Tl) to 0.9998 (51V), sufficient to allow the determination of a wide range of elements in the samples. We also investigated the effects of Methylene Blue (MB) and the NaCl concentration on the elemental analyses. MB could be used as an indicator during the ablation process; its presence in the samples only negligibly influenced the intensities of the signals of most of the tested elements. Notably, high NaCl contents led to signal suppression for some of the elements. In comparison with the established sample introduction by nebulization, our developed technique abrogates the need for time-consuming sample preparation and reduces the possibility of sample contamination.  相似文献   

17.
The radial profiles of some background ions and analytes spanning the mass range and with a wide range of first ionization potentials were investigated using inductively coupled plasma time-of-flight mass spectrometry. In particular, three different matrices were considered to assess the effect of organic modifiers: 1) 1% HNO3, 2) 1% HNO3 with 2%v/v methanol, 3) 1% HNO3 with 0.2% m/v sodium dodecylsulfate (SDS). Although these concentrations of methanol and SDS induced the same sample transport increase (37%), as measured with a silica gel trap at the exit of the spray chamber, neither of them resulted in a 37% increase in signal across the mass range. In fact, the change in analyte signal as a function of m/z followed opposite trends in these two matrices. With 0.2% m/v SDS, suppression was observed at high m/z with an increasing enhancement as m/z decreased, which was ascribed to electrostatic effects in solution. In contrast, little change or enhancement was seen at high m/z while suppression was evident at lower m/z (with the notable exception of As) with 2% v/v methanol, as a result of a widening of the radial profile, which was inversely dependent on m/z. Although, the total carbon concentration was quite different in these two matrices, i.e. 0.8 M with 2% methanol and 0.08 M with 0.2% SDS, it cannot account for the completely different radial profiles that they produced. Indeed, the same bell-shaped distributions of analyte ions were observed with 0.2% SDS as in 1% HNO3 alone. However, a bimodal distribution, with maxima on either side of the central axis, resulted in presence of 2% MeOH. This distribution was found to be similar to that of several background ions (C+, CO+ and ArC+), which further substantiates the suggestion that ionization then predominantly occurs through charge transfer with carbon-containing ions. This bimodal distribution also suggests that a volatile organic solvent such as methanol quickly spreads into the surrounding area of the central channel upon sample introduction in the plasma.  相似文献   

18.
The effects of adding N2 to the outer gas flow of an Ar plasma in inductively coupled plasma mass spectrometry (ICP-MS) are illustrated. With 5% N2 added to the outer gas flow and provided the central (nebulizer) gas flow is increased, modest signal enhancements (up to a factor of 4) are observed. The degree of enhancement depends on the extent to which an element forms a strong metal oxide bond and also, to some extent, on ionization potential. An important feature of N2 mixed gas plasmas for ICP-MS is that the signals for analyte oxide species (MO+) and certain background species (ArO+, ArOH+, Ar2+, ClO+, and ArCl+) are significantly reduced (an order of magnitude) by the addition of N2 to the outer gas flow. In addition to these observations, some results are also presented for O2 and air (outer gas) mixed gas plasmas and N2 (central gas) mixed gas plasmas.  相似文献   

19.
The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51V and 53Cr suffering from Cl interferences (51ClO+ and 53ClO+ respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51V and 53Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.  相似文献   

20.
Spatial profiles of analyte emission in an axially viewed argon filament microwave induced plasma sustained in the TE101 rectangular cavity have been measured along a discharge tube cross-section for neutral atoms as well as ion lines of several elements. The filament diameter was approximately 1 mm. The analyte solution was introduced by means of an ultrasonic nebulizer without desolvation. The radial emission distribution depends on the operating parameters and is different for each of the analytes examined. Spatial distributions of excitation temperature (4000–6000 K) measured with Ar I lines by the Boltzmann plot method as well as electron temperature (6000–8000 K) by line to continuum emission ratio measurements at Ar I 430 nm and electron number density (1–1.5×1015 cm−3) by the Stark broadening method of the Hβ line were determined to support the evidence of plasma processes. In the presence of excess sodium the enhancement of emission intensity and its shift to the plasma center appears to be the result of increased analyte penetration to the plasma. Changes in spatial emission profiles for Ca atoms and ions suggest that for this element ambipolar diffusion may be important as an additional interference mechanism. A possibility of minimizing spectral interferences from argon emission lines by choosing an off-axis plasma region for emission intensity measurements is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号