首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physica A》1988,149(3):622-630
Wetting phenomena on a sphere of radius R are studied in the context of the Sullivan model. Neither a first nor a continuous transition is found for finite R. Only in the strict limit of R→∞ a second-order transition appears. For temperatures T higher than the wetting temperature in a flat geometry, Tw, the thickness l of the enhanced density layer, which forms on the surface of the sphere, is for large R proportional to In R.  相似文献   

2.
《Solid State Communications》2003,125(7-8):439-444
Based on the Hubbard model in the framework of non-phonon kinematical mechanism and taking into account the discreetness of an electronic energy spectrum, the superconducting critical temperature of a mesoscopic high-Tc sphere is analyzed as a function of doping and as a function of particle's radius. The critical temperature Tc is found to be an oscillating function of the radius of a particle. The size-dependent doping regime is revealed in high-Tc nanoparticles. Our analysis shows that each oscillation in Tc corresponds to the increase in a number of the energy levels in the sphere by 1. The amplitude of oscillations of Tc increases with decreasing R and can reach a value of 6 K for nanoparticles with sizes about 25 nm, in good agreement with experimental studies of YBa2Cu3O7−δ nanoparticles.  相似文献   

3.
In this work we study the superconductivity within an attractive two-dimensional one-band Hubbard model. We consider a d-wave superconducting gap and a Hubbard-I approximation to describe the strongly correlated superconducting regime. We use Green's function method to obtain the order parameter Δ and the superconducting critical temperature Tc. The results show that for fixed values of the superconducting attractive potential U (U<0), the gap increases for low temperatures, whereas diminishes abruptly as the temperature increases. The effect of pressure can be discussed, varying the next-nearest-neighbors hopping t2, yielding a change in Tc, and also in Δ0.  相似文献   

4.
Epitaxial superlattices of half-metal, colossal magnetoresistive La2/3Ca1/3MnO3 (HM-CMR) and high-Tc superconducting YBa2Cu3O7-δ (HTSC) are grown with thick and thin modulation lengths (Λ) of YBCO/LCMO, with Λ = 280 nm and 12.5 nm; respectively, on SrTiO3 (0 0 1) single-crystalline substrates by pulsed laser deposition. Transport measurements R(T) show a resistive state below T = 35 K although the superconducting transition temperature is found to be Tc = 60 K and 63 K for both different superlattices, respectively. The onset of the resistive state coincides with a magnetic transition of the samples. This can be explained by a diffusion of spin-polarized quasiparticles into the superconducting film. Which can be considered as evidence for inverse-proximity effects over a wide temperature range in HM-CMR/HTSC heterostructures.  相似文献   

5.
《Physica B+C》1988,147(2-3):175-180
In this paper a model to describe the free carrier-bipolaron interacting system is proposed. Effective hopping of the bipolaron is studied in the slave-boson approach, and a characteristic temperature T1 is obtained, below which the system enters a coherent state. The density of states in the normal state and the superconductivity of the system are discussed in a quasiparticle picture. The results show that the mixing between the free carrier and the bipolaron results in an enhancement of the effective mass of the quasiparticle and meanwhile the renormalized coupling interaction, arising from the negative correlation energy in the bipolaron region, enhances the effective superconducting coupling interaction. Under the most favourable conditions, the superconducting transition temperature Tc ∼ ωc, where ωc is the Debye frequency related with local electron-phonon coupling. In general we have T1 > TcTc0 (Tc0 is the superconducting transition temperature of a usual superconductor). Therefore the system will firstly enter a coherent state before becoming a high-Tc superconductor.  相似文献   

6.
First-principles calculation was performed using tight-binding LMTO method with local density approximation (LDA) and atomic sphere approximation (ASA) to understand the electronic properties of rhenium nitride. The equilibrium geometries, the electronic band structure, the total and partial DOS are obtained under various pressures and are analyzed in comparison with the available experimental data. The most stable structure of ReN is NiAs like structure. Our results indicate that ReN can be used as a super-hard conductor. We estimated the average electron-phonon coupling constant to be 1.65 and superconducting transition temperature (Tc) is 5.1 K. The Tc value increases with the increase in pressure.  相似文献   

7.
We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ? Tc are discussed using the method of successive approximations. The equation for the ratio R1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low-Tc superconductors. The prospect of application of the presented model in studies of high-Tc superconductors and other superconducting systems of the new generation is also discussed.  相似文献   

8.
A systematic study of the transverse voltage at zero magnetic field in the superconducting state is reported. The effects of warming rate, temperature, applied magnetic field, and electrical current on the transversal resistance (RXY) of polycrystalline superconducting sample are taken into account. At zero magnetic field two peaks are observed in RXY(T) curves which are related to the double superconducting transition in the RXX(T) component. In the superconducting (RXX = zero) and normal states no transverse voltage has been detected at zero magnetic field as expected. The results are discussed within the framework of the motion of Abrikosov and Josephson vortices and anti-vortices. A new scaling relation between transverse and longitudinal components given by RXY  dRXX/dT has been confirmed.  相似文献   

9.
The superconducting phase transition in Nb/Cu0.41Ni0.59/Nb trilayers, with superconducting (S) Nb and ferromagnetic (F) Cu0.41Ni0.59, has been experimentally studied as a function of the F-layer thickness by measuring the temperature dependence of the electrical resistance R(T). It is shown that the shape and the width of the R(T) curves depends on the Cu0.41Ni0.59 thickness, in particular in the regime where π is the coupling between the S layers, which can be expected. To explain the data, we developed a qualitative model which makes the interconnection between the superconducting phase transition and the 0 to π transition in SFS structures are more evident. The text was submitted by the authors in English.  相似文献   

10.
We report on low temperature transport measurements on nano-granular Nb thin films deposited on Si (1 0 0) substrates using DC magnetron sputtering. The superconducting transition temperature (Tc) is found to decrease monotonically with the increase of the lattice parameter (a) irrespective of its thickness and grain size. The superconducting transition temperature is found to depend only on the lattice parameter whereas the normal state resistivity depends both on lattice parameter and the details of the sample morphology. We have modeled this Tc variation with lattice expansion in terms of Debye temperature reduction using Morse potential as the interatomic potential in Nb.  相似文献   

11.
We study the disorder effects upon superconducting transition temperature T c and the number of local pairs within the attractive Hubbard model in the combined Nozieres-Schmitt-Rink and DMFT + Σ approximations. We analyze the wide range of attractive interaction U, from the weak coupling region, where instability of the normal phase and superconductivity are well described by the BCS model, to the limit of strong coupling, where superconducting transition is determined by Bose-Einstein condensation of compact Cooper pairs, forming at temperatures much higher than superconducting transition temperature. It is shown that disorder can either suppress T c in the weak coupling limit, or significantly enhance T c in the case of strong coupling. However, in all cases we actually prove the validity of generalized Anderson theorem, so that all changes in T c are related to change in the effective bandwidth due to disorder. Similarly, disorder effects on the number of local pairs are only due to these band-broadening effects.  相似文献   

12.
The features of the superconducting state are studied in the simple exactly solvable model of the pseudogap state induced by fluctuations of the short-range “dielectric” order in the model of the Fermi surface with “hot” spots. The analysis is carried out for arbitrary short-range correlation lengths ξcorr. It is shown that the superconducting gap averaged over such fluctuations differs from zero in a wide temperature range above the temperature T c of the uniform superconducting transition in the entire sample, which is a consequence of non-self-averaging of the superconducting order parameter over the random fluctuation field. In the temperature range T>T c, superconductivity apparently exists in individual regions (drops). These effects become weaker with decreasing correlation length ξcorr; in particular, the range of existence for drops becomes narrower and vanishes as ξcorr → 0, but for finite values of ξcorr, complete self-averaging does not take place.  相似文献   

13.
We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk “poor conductors” in which Fermi energy EF is located in the region of localized states not so far from the Anderson mobility edge Ec. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model.Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems.We identify three distinct phases: ‘critical’ superconductive state formed at EF = Ec, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at EF still deeper inside a localized band. The ‘critical’ superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap Δ, that is due to many-body correlations and a new “pseudo-gap” energy scale ΔP which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive Tc. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical spectral weight. The insulating state is realized due to the presence of local pairing gap but without superconducting correlations; it is characterized by a hard insulating gap in the density of single electrons and by purely activated low-temperature resistivity ln R(T) ∼ 1/T.Based on these results we propose a new “pseudo-spin” scenario of superconductor-insulator transition and argue that it is realized in a particular class of disordered superconducting films. We conclude by the discussion of the experimental predictions of the theory and the theoretical issues that remain unsolved.  相似文献   

14.
The resistance R, the superconducting transition temperature Tc and the energy gap Δ(T) have been measured on the BaPb0.7Bi0.3O3 films up to 14 kbar. We have found that up to 14 kbar: (1) pressure suppresses Tc and Δ(T) while enhances R, (2) the value of 2Δ(0)/kTc is 3.8±0.1, independent of pressure, and (3) the Δ(T)/Δ(0) varies with T/Tc in a BCS fashion but only for T/Tc<0.75 and independent of pressure. The results show that BaPb1?xBixO3 is a weak-coupling superconductor, but fail to provide information about the cause for the high Tc of the compound.  相似文献   

15.
Features of a phase transition between 0 and π states in superconductor/ferromagnet/superconductor (SFS) Josephson structures with thin superconducting layers and a ferromagnetic barrier are studied experimentally and theoretically. The dependence of the critical temperature Tc of a transition of the hybrid structure to a superconducting state on the thickness of superconducting layers ds is analyzed by a local method involving measurements of the nonlinear microwave response of the system by a near-field probe. An anomalous increase in the measured temperature Tc at the reduction of the thickness ds is detected and is attributed to the 0-π transition.  相似文献   

16.
We report synthesis and search for superconductivity of Ba, Sr, Ca and Mg-GIC. We adopted conventional vapor phase reaction in order to prepare high quality GICs. No superconducting transition was found for Ba and Mg-GIC. As for Sr, Sr-GIC showed a sharp superconducting transition at Tc=1.65 K. Sr graphite compound SrCx prepared from powder graphite by thermal treatment at higher temperature showed ferromagnetic character.  相似文献   

17.
The amplitude of scattering of f electrons has been calculated for the periodic Anderson model in the strong-correlation limit (U = ∞) in the Cooper channel. From the condition of the existence of a pole of this amplitude, an equation is derived for determining the critical temperature (T c) of the transition to the superconducting phase with the s symmetry of the order parameter. The temperature T c as a function of the electron density and hybridization parameter has been calculated by self-consistently solving the system of equations. The region of the existence of the superconducting phase is found to adjoin the region of the existence of the unsaturated ferromagnetic state and does not overlap it. The results can be used to describe the transition to the superconducting phase with the s symmetry of the order parameter in heavy-fermion skutterudite LaFe4P12. In this case, the inclusion of the scattering of fermions by spin fluctuations turns out to be substantial enough to obtain T c values close to the experimental data.  相似文献   

18.
The correlation between the density ρs(T→0) of superconducting condensate and the superconducting transition temperature T c in underdoped HTSC systems is considered. It is shown that the linear relation between ρs(0) and T c observed in some experiments can easily be interpreted in the framework of the conventional Bardeen-Cooper-Schrieffer (BCS) model without invoking any exotic superconductivity models.  相似文献   

19.
The temperature dependences ρab(T) of Nd2?x CexCuO4+δ single crystals with 0≤x≤0.20 are studied and analyzed on the basis of the concepts in the theory of disordered 2D systems. The results are compared with the data obtained for other copper-oxide HTSC. It is found that a transition to the superconducting state in the optimal doping region 0.14≤x≤0.18 occurs only in crystals with a fairly small degree of disorder (k Fl≥2, where l is the mean free path). This transition is compatible with the weak 2D-localization mode as long as the localization radius is longer than the characteristic size of a Cooper pair. The superconducting transition temperature in the optimal doping region increases monotonically with the parameter k Fl characterizing the degree of disorder in the crystal. The degradation of superconducting properties upon a further increase in the doping level (x>0.18) is apparently associated with a transition from 2D to 3D conductivity in the single crystal.  相似文献   

20.
In this work we report the dimensional dependence of local properties of polycrystalline and top seeded melting textured YBa2Cu3O7?x/Ag superconducting samples. The cross sectional area of superconducting bars was successively decreased and the resistance–temperature (R × T) curves for different cross section area was obtained. The results show that for a given current, the R × T curves, specially the onset of zero resistance (TC0), are dependent on the bridges dimensions. The results obtained are in accordance with a percolation model considering a random mixture of normal and superconducting elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号