首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fluid Phase Equilibria》2006,239(2):223-239
The recovery of carboxylic acids from aqueous phases is often achieved by reactive extraction with water-insoluble amines which are dissolved in an organic solvent. The basic design of such downstream processes requires a thermodynamic framework for the encountered liquid–liquid equilibrium. The thermodynamic framework should be able to describe the rather uncommon and surprising effects that comparatively small amounts of strong electrolytes might have. Such strong electrolytes can either reduce or increase the affinity of a carboxylic acid for the organic phase in particular at low aqueous phase concentrations of the carboxylic acids. That behavior was explained in previous investigations with citric acid as a model compound for a carboxylic acid and modeled by combining the dissociation/protonation equilibrium in the aqueous phase with the formation of organic phase complexes of (amine + acid(s) + water). In the present investigation this work is extended to acetic acid as another example for a carboxylic acid. New experimental results are reported for the influence of sodium chloride, sodium nitrate, sodium sulfate, sodium citrate and hydrochloric acid on the partitioning of acetic acid to coexisting aqueous/organic liquid phases of the system (water + methyl isobutyl ketone (organic solvent) + tri-n-octylamine (chemical extractant)) at 25 °C. The phase behavior is described by an extension of the previously published thermodynamic framework that is able to describe/predict the influence of a strong electrolyte on the partitioning of acetic acid.  相似文献   

2.
Water-insoluble amines (dissolved in an organic solvent/organic solvent mixture) are often used for the extractive recovery of carboxylic acids from aqueous phases. The basic design of the extraction process requires a thermodynamic framework that should be able to describe the liquid–liquid phase equilibrium not only in the phase forming systems (water + carboxylic acid + organic solvent + reactive extractant), but also when the aqueous feed phase contains additionally small amounts of strong electrolytes. Even small amounts of strong electrolytes might considerably reduce the recovery rate. In part I of this series such a model was presented and discussed for methyl isobutyl ketone as organic solvent and tri-n-octylamine (TnOA) as the chemical extractant. The present part II is to demonstrate that the procedures/methods described for methyl isobutyl ketone as organic solvent can be applied also for other organic solvents. By way of example, here toluene is that organic solvent. New experimental results are reported for the influence of sodium chloride, sodium nitrate, sodium sulfate, sodium acetate and hydrochloric acid on the partitioning of acetic acid to coexisting aqueous/organic liquid phases of the system (water + toluene + tri-n-octylamine) at 25 °C. An extension/adaptation of the previously published thermodynamic framework is successfully applied to describe/predict the new experimental liquid–liquid phase equilibrium data.  相似文献   

3.
In this work, back extraction was considered a promising alternative to regenerate carboxylic acids of low-volatility into appropriate aqueous solution from organic phase. Identification of an efficient back extraction system for lactic acid recovery was focused on. Screening of back extraction reagents was first carried out by employing a wide variety of inorganic compounds. From the viewpoints of high stripping power, low cost and capability of simultaneously regenerating the extractant, aqueous sodium chloride solution was selected as the most suitable one for recovery of lactic acid from lactate–TOMAC (tri-n-octylmethylammonium chloride) complex. However, TOMAC and oleyl alcohol are likely to pose the troubling emulsion problem in conventional mixer–settler system. Therefore, non-dispersive back extraction of lactic acid from organic phase was attempted in a microporous hollow fiber (MHF) membrane device by aqueous NaCl solution. A satisfactory recovery was accomplished, signifying the great potential of integrating membrane back extraction with extractive fermentation process for lactic acid production.  相似文献   

4.
Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.  相似文献   

5.
A simple graphical method for determination of thermodynamic equilibrium constants, developed for ion-exchange and solvent extraction processes, was successfully applied to a liquid exchangersystem. Close values of the thermodynamic equilibrium constants for the system uranyl chloride—hydrochloric acid—di-2-ethylhyxyl phosphoric acid—toluene (K=7.8±0.8) were obtained when the ionic strength of the aqueous phase was varied and the concentration of di-2-ethylhexyl phosphoric acid in the organic phase was kept constant, and vice versa.  相似文献   

6.
A mathematical model for analysing the extraction of Cr(VI) from aqueous acidic solution by emulsion liquid membrane using Aliquat 336 as extractant and NaOH as stripping agent has been presented. The existing models developed so far do not account for the existence of different forms of Cr(VI) ions in the aqueous phase depending on pH conditions. Accordingly, in the present model, reaction equilibrium has been considered instead of distribution coefficient to represent realistically the transport mechanism for this type of system through liquid surfactant membrane. Unlike other models, liquid–liquid equilibrium of sodium hydroxide-chloride of Aliquat 336 has also been considered. The carrier thus exists in the membrane phase in hydroxide and chloride forms and extraction of hexavalent chromium from the external phase proceeds by the two carriers. The validity of the model has been checked from comparison of the simulated curves and experimental data using chemical reaction equilibrium constant and Deff/R2 as fitting parameters.  相似文献   

7.
We demonstrate that the thermodynamic properties of a single liquid aerosol droplet can be explored through the combination of a single-beam gradient force optical trap with Raman spectroscopy. A single aqueous droplet, 2-6 microm in radius, can be trapped in air indefinitely and the response of the particle to variations in relative humidity investigated. The Raman spectrum provides a unique fingerprint of droplet composition, temperature, and size. Spontaneous Raman scattering is shown to be consistent with that from a bulk phase sample, with the shape of the OH stretching band dependent on the concentration of sodium chloride in the aqueous phase and on the polarization of the scattered light. Stimulated Raman scattering at wavelengths commensurate with whispering gallery modes is demonstrated to provide a method for determining the size of the trapped droplet with nanometer precision and with a time resolution of 1 s. The polarization dependence of the stimulated scatter is consistent with the dependence observed for the spontaneous scatter from the droplet. By characterizing the spontaneous and stimulated Raman scattering from the droplet, we demonstrate that it is possible to measure the equilibrium size and composition of an aqueous droplet with variation in relative humidity. For this benchmark study we investigate the variation in equilibrium size with relative humidity for a simple binary sodium chloride/aqueous aerosol, a typical representative inorganic/aqueous aerosol that has been studied extensively in the literature. The measured equilibrium sizes are shown to be in excellent agreement with the predictions of K?hler theory. We suggest that this approach could provide an important new strategy for characterizing the thermodynamic properties and kinetics of transformation of aerosol particles.  相似文献   

8.
范云场  张社利  陈梅兰  申屠超  朱岩 《分析化学》2010,38(12):1785-1788
以离子液体氯化1-辛基-3-甲基咪唑盐([Omim]Cl)的水溶液为萃取剂,采用加速溶剂萃取结合高效液相色谱法测定了蜜饯中苯甲酸、山梨酸、肉桂酸等有机酸类防腐剂,优化了加速溶剂萃取实验参数,最佳萃取条件为:离子液体浓度为0.1mol/L,萃取时间为5min,萃取温度为80℃。在最佳条件下,有机酸类防腐剂的检出限为0.4~27.7μg/L。将本方法用于蜜饯样品的检测,回收率为78.2%~113.9%。实验结果表明:离子液体-加速溶剂萃取法快速、高效。  相似文献   

9.
10.
Separation of microbial cells by flotation recovery is usually carried out in industrial reactors or wastewater treatment systems, which contain a complex mixture of microbial nutrients and excretion products. In the present study, the separation of yeast cells by flotation recovery was carried out using a simple flotation recovery systems containing washed yeast cells resuspended in water in order to elucidate the effects of additives (defined amounts of organic and inorganic acids, ethanol, surfactants and sodium chloride) on the cellular interactions at interfaces (cell/aqueous phase and cell/air bubble). When sodium chloride, organic acids (notably propionic, succinic and acetic acids) and organic surfactants (sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB) and Nonidet P40) were added to the flotation recovery system, significant increases in the cell recovery of yeast hydrophobic cells (Saccharomyces cerevisiae, strain FLT-01) were observed. The association of ethanol to acetic acid solution (a minor by-product of alcoholic fermentation) in the flotation recovery system, containing washed cells of strain FLT-01 resuspended in water, leading to an increased flotation recovery at pH 5.5. Thus, the association among products of the cellular metabolism (e.g., ethanol and acetic acid) can improve yeast cell recovery by flotation recovery.  相似文献   

11.
The commercial extractant Acorga CLX-50 and model individual di-2-ethylhexyl pyridine-3,5-dicarboxylate and 2-ethylhexyl pyridine-3-carboxylate in toluene were used for palladium(II) extraction from aqueous HCl solutions. The studies of extraction rate and equilibrium were carried out in systems containing palladium(II) ions in 3.0, 0.1, and 0.1M HCl in the presence of 0.5M sodium chloride and in 0.1M HCl in the presence of 0.1–6.0M lithium chloride and in 0.1M HCl in the presence 0.1–3.5M sodium nitrate. The examined extractants can efficiently extract palladium(II) from aqueous hydrochloric acid and nitrate solutions. The extraction is slow and equilibrium is obtained after 2 hours. The best extraction of palladium(II) is observed from 0.1M HCl solution in the presence of 3.5M sodium nitrate. A spontaneous transfer of palladium(II) to the toluene phase without any phase mixing is also observed.  相似文献   

12.
Sodium deoxycholate in water dissociates into sodium cation and deoxycholate anion in the aqueous phase, and then, the latter anions partially hydrolyze to form deionized deoxycholic acids. The acids move into the benzene phase, when liquid benzene is placed upon the aqueous phase, and finally the partition equilibrium is reached. The above processes were traced by pH change in the aqueous phase by a pH meter or the change in [OH-] with time, from which the rate for transfer of neutralized acid to the organic phase was analyzed. From the trace, the rate constants for hydrolysis of acid anion ( kf), neutralization of acid ( kb), transfer of neutralized acid from the aqueous phase to the organic phase ( kin*), and its back-transfer from the organic phase to the aqueous phase ( kut*) were evaluated; kf = 2.18 x 10 (-4) mol (-1) dm (3) min (-1), kb = 1.24 x 10 (5) mol (-1) dm (3) min (-1), kin* = 4.06 x 10 (-1) min (-1) cm (-2), and kout*) = 8.00 x 10 (-2) min (-1) cm (-2). The above values are supported by the partition constant of deoxycholic acid between the benzene phase and the aqueous phase.  相似文献   

13.
The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR? in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.  相似文献   

14.
The morphology of bi-phase aerosol particles containing phase separated hydrophobic and hydrophilic components is considered, comparing simulations based on surface and interfacial tensions with measurements made by aerosol optical tweezers. The competition between the liquid phases adopting core-shell and partially engulfed configurations is considered for a range of organic compounds including saturated and unsaturated hydrocarbons, aromatics, alcohols, ketones, carboxylic acids, esters and amines. When the solubility of the organic component and the salting-out of the organic component to the surface by the presence of concentrated inorganic solutes in the aqueous phase are considered, it is concluded that the adoption of a partially engulfed structure predominates, with the organic component forming a surface lens. The aqueous surface can be assumed to be stabilised by a surface enriched in the organic component. The existence of acid-base equilibria can lead to the dissociation of organic surfactants and to significant lowering of the surface tension of the aqueous phase, further supporting the predominance of partially engulfed structures. Trends in morphology from experimental measurements and simulations are compared for mixed phased droplets in which the organic component is decane, 1-octanol or oleic acid with varying relative humidity. The consequences of partially engulfed structures for aerosol properties are considered.  相似文献   

15.
Condensation of diethylenetriamine with lauric, 2-ethylhexanoic, and α,α′-branched C10,12-carboxylic acids results in 1-(2-alkylamidoethyl)-2-alkyl-2-imidazolines. A stability of the synthesized compounds relative to the acid and alkaline hydrolysis was studied. Their protonation constants were determined. The effect of the structure of the alkyl substituents on the distribution of the substance between the organic and aqueous phases was examined. The principal possibility of extracting Zn(II), Fe(III), Cu(II), Co(II), Mn(II) chlorides from hydrochloric acid solutions was shown. A mixture of 1-(2-alkylamidoethyl)-2-alkyl-2-imidazolines based on the α,α′-branched carboxylic acids was suggested as a potential extractant of the metal salts from hydrochloric acid and chloride solutions.  相似文献   

16.
Procedures for the gas-chromatographic determination of formic acid in oxidation produts of organic substances after its conversion to benzyl formate were developed. In determining formic acid in an organic phase, free formic acid was esterified with benzyl alcohol in a pyridine solution while adding acetic anhydride under mild conditions. The conversion of formic acid was complete even in the presence of other mono-and dicarboxylic acids in considerable amounts. It was found that the formation of benzyl formate occurred via a mixed aldehyde formed in situ from formic acid and acetic anhydride. The determination of formic acid in aqueous solutions involves the synthesis of its sodium or potassium salt and the successive treatment of this salt with acetyl chloride and benzyl alcohol in a pyridine solution.  相似文献   

17.
A study on extraction of uranium(VI) from sulfuric acid media by the primary amine N1923 in chloroform is described. Extraction coefficients of uranium(VI) as a function of aqueous H2SO4 concentration, extractant concentration and temperature have been studied. From the data, the compositions of extracted species, equilibrium constants and enthalpies of extraction reaction have been evaluated. A new extraction mechanism of amine has been suggested, that is the formation of reversed micelle as a result of the aggregation of ammonium salt in the organic phase of the extraction. This assumption may be used for interpreting extraction data satisfactorily, which can not be explained by the slope analysis method.  相似文献   

18.
Tri-n-octylphosphine sulfide (TOPS) has been investigated as the stationary phase in reversed-phase partition paper Chromatographie separations using nitric or hydrochloric acids as the mobile phase. TOPS has also been studied as an extractant for metal ions. Silver, mercury (II), and palladium (II) were found to have RF values of zero when nitric acid was used as the mobile phase. These same ions were also selectively extracted from aqueous nitric acid solutions. Gold(III), mercury(II), palladium (II), and platinum (IV) were found to have RF values of zero when hydrochloric acid was used as the mobile phase. However, only gold(III) and mercury(II) were extracted from aqueous hydrochloric acid solutions in liquid-liquid extraction systems. Several separations were successfully performed from 1 M nitric acid.  相似文献   

19.
We demonstrate that nonlinear Raman spectroscopy coupled with aerosol optical tweezers can be used to probe the evolving phase partitioning in mixed organic/inorganic/aqueous aerosol droplets that adopt a core-shell structure in which the aqueous phase is coated in an organic layer. Specifically, we demonstrate that the characteristic fingerprint of wavelengths at which stimulated Raman scattering is observed can be used to assess the phase behavior of multiphase decane/aqueous sodium chloride droplets. Decane is observed to form a layer on the surface of the core aqueous droplet, and from the spectroscopic signature the aqueous core size can be determined with nanometer accuracy and the thickness of the decane layer with an accuracy of +/-8 nm. Further, the presence of the organic layer is observed to reduce the rate at which water evaporates from the core of the droplet with an increasing rate of evaporation observed with diminishing layer thickness.  相似文献   

20.
Dynamic combinatorial chemistry is a method widely used for generating responsive libraries of compounds, with applications ranging from chemical biology to materials science. It relies on dynamic covalent bonds that are able to form in a reversible manner in mild conditions, and therefore requires the discovery of new types of these bonds in order to progress. Amides, due to their high stability, have been scarcely used in this field and typically require an external catalyst or harsh conditions for exchange. Compounds able to undergo uncatalysed transamidation at room temperature are still rare exceptions. In this work, we describe reversible amide formation and transamidation in a class of compounds known as maleamic acids. Due to the presence of a carboxylic acid in β-position, these compounds are in equilibrium with their anhydride and amine precursors in organic solvents at room temperature. First, we show that this equilibrium is responsive to external stimuli: by alternating the additions of a Brønsted acid and a base, we can switch between amide and anhydride several times without side-reactions. Next, we prove that this equilibrium provides a pathway for reversible transamidation without any added catalyst, leading to thermodynamic distributions of amides at room temperature. Lastly, we use different preparation conditions and concentrations of Brønsted acid to access different library distributions, easily controlling the transition between kinetic and thermodynamic regimes. Our results show that maleamic acids can undergo transamidation in mild conditions in a reversible and tunable way, establishing them as a new addition to the toolbox of dynamic combinatorial chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号