首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a finite-element modelling framework is presented with explicit representation of polycrystalline microstructure for a tempered martensite ferritic steel. A miniature notched specimen was manufactured from P91 steel with a 20,000 h service history and tested at room temperature under three point bending. Deformation at the microscale is quantified by electron back scattered diffraction (EBSD) before and after mechanical loading. A representative volume element was developed, based on the initial EBSD scan, and a crystal plasticity model used to account for slip-based inelastic deformation in the material. The model showed excellent correlation with the experimental data when the relevant comparisons were made.  相似文献   

2.
Recent applications of structural plasticity to areas such as vehicle crashworthiness has led to interest in the large deformation plastic collapse of general frames. Even when displacements are comparable to the original structural dimensions, the plasticity is confined to localized regions or “hinges”. This paper reports an experimental study of the behavior of such hinges in thin walled structural members. Due to local deformation the load carrying capacity of the hinge significantly decreases at large rotations. In a companion paper [4] a structural constitutive theory is proposed to account for this behavior. Numerical data for this theory is obtained in the present paper. Finally test results are given for a large deformation combined loading test designed to validate the theory of [4]. The experimental results are in good agreement with the theoretical predictions.  相似文献   

3.
A possible mathematical ice model for the wave interactions in polar seas was developed based on the assumption that an ice cover behaved as a Voigt viscoelastic material. The dispersion relation was found to depend on the rheological properties of the cover. In the present study, an experimental approach was developed that can enable the verification of the theoretical predictions in the laboratory. The approach utilized the blended mixture of white oil and Polydimethylsiloxane (PDMS) material with various mass percentages of a curing agent, to create a floating layer with a range of targeted viscoelastic properties. Due to the large coverage required for wave flume experiments, special curing procedures were also established for the preparation of PDMS material. The rheological results showed that the mechanical behavior of the floating cover was close to a Voigt material. Experiments were conducted to analyze the wave interactions with the floating viscoelastic cover. The measured data showed an obvious change of wavelength when waves propagated along the cover region. It is observed that the change in wavelength can be linked quantitatively to the viscoelastic properties based on the numerical predictions by Wang and Shen (2010). Some differences were however noted for less viscous covers under longer wave periods. A direct comparison of the PDMS covers with a polypropylene (PP) cover was also performed for verification. Only wave lengthening was observed under the PP cover. With a shear modulus more than three orders of magnitude greater than that of PDMS, the theoretical wavelength for the PP cover from Wang and Shen (2010) is very close to that of the thin elastic plate theory from Fox and Squire (1990). Comparison between these two theoretical results and the measured data again deviated with longer wave periods. In both PDMS and PP cases, edge effects and pitching motion of the covers were present at various degrees. In addition, the materials were not strictly a Voigt type. The small deviation from the idealized rheological behavior could also contribute to differences between theoretical and experimental results.  相似文献   

4.
Digital image processing was used to obtain the deformation fields around a propagating crack tip from photographic films recorded by a high-speed Cranz-Schardin camera. The in-plane displacements and strains determined from the process were then used to compute the dynamic stress intensity factor and the remote stress component parallel to the crack face.K dominance is discussed using the experimental data. Surface roughness of the fractured surface is also examined.  相似文献   

5.
Thin-walled tubular specimens were employed to study the cyclic deformation of extruded AZ61A magnesium alloy. Experiments were conducted under fully reversed strain-controlled tension-compression, torsion, and combined axial-torsion in ambient air. Mechanical twinning was found to significantly influence the inelastic deformation of the material. Cyclic hardening was observed at all the strain amplitudes under investigation. For tension-compression at strain amplitudes higher than 0.5%, the stress-strain hysteresis loop was asymmetric with a positive mean stress. This was associated with mechanical twinning in the compression phase and detwinning in the subsequent tension phase. Under cyclic torsion, the stress-strain hysteresis loops were symmetric although mechanical twinning was observed at high shear strain amplitudes. When the material was subjected to combined axial-torsion loading, the alternative occurrence of twinning and detwinning processes under axial stress resulted in asymmetric shear stress-shear strain hysteresis loops. Nonproportional hardening was not observed due to limited number of slip systems and the formation of mechanical twins. Microstructures after the stabilization of cyclic deformation were observed and the dominant mechanisms governing cyclic deformation were discussed. Existing cyclic plasticity models were discussed in light of their capabilities for modeling the observed cyclic deformation of the magnesium alloy.  相似文献   

6.
Cyclic deformation under proportional and nonproportional loading of a textured copper was experimentally studied, and the results were compared with those of texture-free copper with the same grain size. The texture had a great influence on the equivalent cyclic stress–strain (CSS) curves under proportional loading but insignificant influence on the CSS curves under nonproportional loading. By comparing the slip patterns on the specimen surface and dislocation substructures under proportional and nonproportional loading, the mechanism of nonproportional hardening was discussed. The slip multiplicity inherited from originally multiple-slip oriented grains plays a minor role. Nonproportional hardening is the result of enhanced activated slip systems and more uniform activation of slip systems due to the rotation of maximum shear stress under nonproportional loading. At high strain amplitudes, cells were the primary substructures for both proportional and nonproportional loading but the diameters of the cells under nonproportional loading were smaller for similar strain magnitude. A linear relationship existed between the saturation equivalent stress magnitude and the reciprocal of the diameter of the dislocation cells. Such a relationship was independent of the loading modes and texture. The saturation stress magnitude was related to the bowing stress of screw dislocations in the interior area of dislocation cells. The mechanical response was practically recoverable either when the loading magnitude was changed from a higher value to a lower value or when the loading was changed from a nonproportional loading path to a proportional loading path. However, the dislocation substructures cannot be completely recovered.  相似文献   

7.
Experiments to measure the effect of hardening on the plastic deformation field near a notch tip in metallic single crystals were conducted. The specimens were cut from pure Cu and a CuBe alloy (with 1.8-2.0 wt% Be) FCC single crystals. The Cu-2.0wt%Be alloy was selected because its initial hardness and rate of hardening can be modified by heat treatment. The Vickers hardness of the specimens ranged from 87 to , while the hardening exponents ranged between 10 and 4.5. The experimental results were compared to analytical and numerical solutions from the literature. This comparison shows that the inclusion of elastic regions in the analytical solutions and anisotropic hardening in the numerical solutions results in better agreement with the experiments.  相似文献   

8.
An experimental study was conducted on the inhomogeneous cyclic plastic deformation of 1045 steel under multiaxial cyclic loading. Thin-walled tubular specimens were used and small strain gages were bonded on the specimen surface to characterize the local deformation. The controlled loading paths included cyclic tension–compression, cyclic torsion, proportional axial-torsion, 90°-out-of-phase axial-torsion, and fully reversed torsion with a constant axial stress. The maximum stress in each experiment was lower than the lower yield stress of the material. It was found that the cyclic plastic deformation within the gage section of the specimen under multiaxial stress state followed the three-stage process that was observed from uniaxial loading, namely, incubation, propagation, and saturation. The plastic deformation was significantly inhomogeneous during the propagation stage, and the inhomogeneity continued through the saturation stage. The duration of each stage and the saturated strains were dependent on the cyclic stress amplitude and the loading path. Multiaxial stress state reduced the incubation stage. With identical equivalent stress magnitude, the nonproportional loading path resulted in the shortest incubation and propagation stages, and the saturated equivalent plastic strain magnitude was the smallest. Although the deformation over the gage section was inhomogeneous, the plastic deformation in a given local area was found to be practically isotropic.  相似文献   

9.
10.
Two turbulent separated and reattaching flows produced by a sudden expansion in a pipe have been studied. The first was produced by a simple axisymmetric sudden enlargement from a nozzle of diameter 80 mm to a pipe of diameter 150 mm. The second was the flow at the same enlargement with the addition of a centerbody 90 mm downstream of the nozzle exit. Detailed measurements of velocity and skin friction (made primarily using pulsed wires) and of wall static pressure are presented. Without the centerbody the flow structure is similar to that observed in other sudden pipe expansions and over backward-facing steps. A turbulent free shear layer, bearing some similarity to that of a round jet, grows from separation and then reattaches to the pipe wall downstream. Reattachment is a comparatively gradual process, the shear layer approaching the wall at a glancing angle. The introduction of the centerbody causes the shear layer to curve towards the wall and reattach at a much steeper angle. Reattachment is much more rapid; gradients of skin friction and pressure along the wall are many times those without the centerbody. The high curvature of the shear layer strongly influences its turbulent structure, locally suppressing turbulence levels and reducing its growth rate.  相似文献   

11.
This paper presents some experimental results of an extensive research on a novel oscillating heat pipe. The heat pipe is formed of three interconnected columns as different from the pulsating heat pipe designs. The dimensions of the heat pipe considered in this study are large enough to neglect the effect of capillary forces. Thus, the self-oscillation of the system is driven by the gravitational force and the phase lag between the evaporation and condensation processes. The overall heat transfer coefficient is found to be approximately constant irrespective of heat load for the experimental cases considered. The results are also compared with the previously published data by other investigators for water as the working fluid and for the same heat input range. The experimental data for the time variation of the liquid column heights and the vapor pressure are correlated algebraically, convenient for practical uses.  相似文献   

12.
13.
A three-dimensional (3D) polycrystal intergranular model that accounts for grain boundary deformation and intergranular weakening at elevated temperatures is presented. The effects of grain boundaries on the accumulated slip deformation of grain interiors and lattice rotation have been investigated through a comparison between results from a model including grain boundary region (GBM) and a model representing only the grain interiors not the grain boundary region directly (NGBM). It is found that the presence of grain boundaries seems to suppress the grain interior slip deformation, and this suppressive role is reduced with increased relative thickness of the grain boundaries. In addition, grain boundaries promote the lattice rotation of individual grains in shear bands but suppress that of individual grains within non-shear bands. Mutual rotation of grains in both shear and non-shear bands is caused by the introduction of grain boundary regions. Rate-dependence of high-temperature plasticity could be more accurately captured by the GBM than by the NGBM. By considering creep damage of grain boundary, when the damage variable reaches a critical value, the corresponding grain boundary element is eliminated to describe dynamic intergranular fracture processes. The volume-averaged stress–strain curve by a model considering grain boundary damage (DGBM) showed better agreement with experimental results than that by a model not considering grain boundary damage (GBM).  相似文献   

14.
In the present research, hydrodynamic behavior of free surface vortices including surface displacement of the vortex core as a function of the vortex stability, relationship between the intake hydraulic parameters and vortex strength and characteristics of the vortex vertical stretching as a function of the intake hydraulic parameters were experimentally investigated in a horizontal intake. Relationship between the vortex-induced air and vortex strength was also evaluated and compared with the previous researches. In this regard, by defining a non-dimensional parameter as intake number, relationships between intake hydraulic parameters and other investigated dynamic aspects of free-surface vortices were discussed.  相似文献   

15.
The Portevin-Le Chatelier (PLC) effect is closely associated with inhomogeneous deformation, which is characterized by the band of strain localization. In this work, the spatio-temporal dynamics of the Portevin-Le Chatelier deformation bands are investigated by a novel digital speckle pattern metrology technique consisting of digital speckle pattern interferometry (DSPI) and digital speckle correlation (DSC). A series of tension process of a commercial aluminum alloy (A2017) under different imposed strain rates in a range from 10−6 to 10−3 s−1 are monitored in real time with this technique. The formation of the PLC band, the evolution of the band structure and the propagation of the band are visualized and followed by fringe patterns. The distribution of the deformation in the specimen containing the band is measured precisely. It is shown that even for a tensile test, an elastic shrinkage deformation, which is caused by the avalanche-like shearing deformation within the band, occurs outside the band.  相似文献   

16.
An experimental study has been made on the interaction of a vortex ring with a plane solid boundary which is inclined to the axis of the ring. Dye visualizations of the ring during the interaction revealed (i) the formation of bi-helical vortex lines around the circumferential axis of the ring, and (ii) that these vortex lines were constantly being displaced along the circumferential axis on either side of the plane of symmetry and towards the region of the ring furthest away from the wall. Key factors which may be responsible for this phenomenon have been identified and are discussed in this paper.  相似文献   

17.
高密度B炸药的燃烧转爆轰实验研究   总被引:3,自引:0,他引:3  
采用电探针及压力传感器测试技术对密度为1.597 g/cm3的固体B炸药(TNT/RDX=40/60)的燃烧转爆轰性能进行研究。实验结果表明,在较强的约束条件下(45号钢管,内径20 mm,外径64 mm,长500 mm),B炸药形成了DDT现象,诱导爆轰距离为295~310 mm。  相似文献   

18.
19.
In this work, the drag coefficient and the void fraction around a tube subjected to two-phase cross flow were studied for a single tube and for a tube placed in an array. The drag coefficients were determined by measuring the pressure distribution around the perimeter of the tube. Single tube drag data were taken when the tube was held both rigidly and flexibly. The test tube was made of acrylic and was 2.2 cm in diameter and 20 cm in length. In the experiments, liquid Reynolds number ranged from 430 to 21,900 for the single tube and liquid gap Reynolds number ranged from 32,900 and 61,600 for the tube placed in a triangular array. Free stream void fraction was varied from 0 to 0.4. At low Reynolds numbers, the ratio of two-phase to single-phase drag coefficient is found to be a strong function of εGr/Re2. However, at high Reynolds numbers only void fraction is the important parameter. Empirical correlations have been developed for the ratio of two-phase drag on a single tube and on a tube placed in an array.  相似文献   

20.
The paper describes an experimental and theoretical study of the deposition of small particles from a turbulent annular-flow with cross-stream temperature variation, focusing on the effects of thermophoresis. Various expressions for the thermophoretic force on a spherical particle are critically discussed. The well-known composite formula of Talbot et al. (1980) does not include the ‘second mechanism of thermophoresis’ and it is concluded that the more recent theoretical approach of Beresnev and Chernyak (1995) is probably more reliable. New experimental measurements of particle deposition from a turbulent flow with cross-stream temperature gradients are then presented. The measurement technique is similar to the method of Liu and Agarwal (1974) but in the test section the aerosol flows vertically downwards in an annular gap between two concentric pipes. By heating the outer pipe and cooling the inner it is possible to establish a substantial, near-constant temperature difference between the two walls and hence a thermophoretic force which varies only with radius. Numerical calculations provide a comparison of theory with experiment. The theory is based on the turbulent deposition models of Young and Leeming (1997) and Slater et al. (2003) modified to include thermophoresis and the annular geometry. The theory of Beresnev and Chernyak gives good agreement with the experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号