首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of a permeation liquid membrane system for the preconcentration and separation of nickel in natural and sea waters and subsequent determination by atomic absorption spectroscopy is presented. 2-Hydroxybenzaldehyde N-ethylthiosemi-carbazone (2-HBET) in toluene is used as the active component of the liquid membrane. A study strategy based on a simplex design has been followed. Several chemical and physical parameters were optimized. Maximum permeation coefficient was obtained at a feed solution pH of 9.4, 0.3 mol l−1 of HNO3 in the stripping solution and 1.66 mmol l−1 of 2-HBTE in toluene as carrier. The precision of the method was 4.7% at 95% significance level and a detection limit of 0.012 μg l−1 of nickel was achieved. The preconcentration procedure showed a linear response within the studied concentration range from 3 to 500 μg l−1 of Ni in the feed solution. The method was validated with different spiked synthetic seawater and certified reference water samples: TMDA-62 and LGC 6016, without matrix interferences and showing good concordance with the certified values, being the relative errors −5.9% and −2.2%, respectively. Under optimal conditions, the average preconcentration yield for real seawater samples was 98 ± 5%, with a nickel preconcentration factor of 20.83 and metal concentrations ranging between 2.8 and 5.4 μg l−1.  相似文献   

2.
The transfer and separation of Cu(II) ions across a bulk liquid membrane (BLM) containing pyridine-2-acetaldehyde benzoylhydrazone (2-APBH) as the mobile carrier dissolved in toluene has been investigated and optimised. The system was applied to the preconcentration of copper from natural waters prior to analysis by flame atomic absorption spectroscopy. The flux of copper across the membrane has been studied, and characterised as a function of analytical variables such as the carrier concentration, volume of organic phase, pH of feed and strip receiving solutions, stirring rate and temperature of solutions. The preconcentration yield at optimum conditions was 100.54±0.94%, even with a high saline matrix (30 g l−1 NaCl), with good precision (1.49%). A preconcentration factor of approximately 18 times could be obtained. The detection limit of a blank sample was 0.24 μg l−1 of Cu.The method was validated using a certified reference material (TMDA-62) and was applied successfully to the analysis of copper in two samples of seawater collected from the coast of Huelva (Spain). The relative errors were 2.42% for CRM and 0.48 and 3.66%, for seawaters (obtained between the results of the proposed and DPASV methods), respectively.  相似文献   

3.
High concentration of added hydrogen fluoride converted the seawater chloride to the corresponding fluoride matrix, and the liberated hydrochloric acid could be removed during the drying step. The atomization of cadmium and lead could be performed at a relatively low temperature (∼1300 °C) at which the vaporization of the fluoride matrix was relatively slow, and the corresponding weak background signals could be separated from the analytical signals in time. Experimental conditions for the determination of Cd and Pb in seawater in the presence of HF were optimized with the use of the a priori calculation of the limit of detection. The experimental limit of detection obtained for Cd and Pb were, respectively, 0.007 and 0.25 μg l−1 for a 15-μl seawater sample (3σ, 20 replicates). The concentrations of Cd determined in a SLEW-1 estuarine water and a CASS-2 seawater were 0.020±0.002 and 0.016±0.002 μg l−1 Cd, respectively, in good agreement with the 0.018±0.003 and 0.019±0.004 μg l−1 Cd certified values (At the 95% confident level, 10 replicates).  相似文献   

4.
On-line system incorporating a microcolumn of Muromac A-1 resin was used for the developing of method for preconcentration of trace elements followed by inductively coupled plasma (ICP) atomic emission spectrometry determination. A chelating type ion exchange resin has been characterized regarding the sorption and subsequent elution of 24 elements, aiming to their preconcentration from water samples of different origins. The effect of column conditioning, pH and flow rate during the preconcentration step, and the nature of the acid medium employed for desorption of the retained elements were investigated. A sample (pH 5) is pumped through the column at 3 ml min−1 and sequentially eluted directly to the ICP with 3 M HNO3/HCl mixtures. In order to remove residual matrix elements from the column after sample loading a short buffer wash was found to be necessary. The effectiveness of the matrix separation process was illustrated. The procedure was validated by analyzing several simple matrices, Standard River water sample as well as artificial seawater. Proposed method can be applied for simultaneous determination of In, Tl, Ti, Y, Cd, Co, Cu and Ni in seawater and for multielement trace analysis of river water. Recovery at 1 μg l−1 level for the determination of investigated 24 elements in pure water ranged from 93.1 to 96% except for Pd (82.2%) and Pb (88.1%). For the same concentration level for seawater analysis recovery was between 81.9 and 95.6% except for Hg (38.2%).  相似文献   

5.
This study describes the functionalization of biopolymer chitosan, using the complexing agent 8-hydroxyquinoline (oxine) by reaction of diazotization. The chelating resin was characterized by degree of deacetylation, infrared, Raman spectroscopy. The efficiency of the chelating resin and accuracy of the proposed method was evaluated by the metal ion recovery technique in the analysis of potable water, lake water, seawater and a certified sample of oyster tissue. The metal ions Cd(II) and Cu(II) in the samples were previously enriched in a minicolumn and flow injection flame atomic absorption spectrometry (FI-FAAS) determined the concentrations of the analytes. The chelating resin exhibited high selectivity for Cd(II) at pH 7 and for Cu(II) at pH 10. The eluent concentration was tested by the use of HNO3 in concentrations of 0.1-3 mol l−1 maximum response was obtained at 0.5 mol l−1 for Cd(II) and Cu(II), with R.S.D. values of 0.4%. The analytes gave relative standard deviations (R.S.D.) of 1.5 and 0.7% for solutions of Cd(II) and Cu(II), respectively (n = 7) containing 20 μg l−1 of the metal ions, defining a high reproducibility. The limits of detection (LOD) were 0.1 μg l−1 for Cd(II) and 0.4 μg l−1 for Cu(II). The analytical properties of merit were obtained using the parameters previously optimized with preconcentration time of 90 s. The chelating resin showed chemical stability within a wide range of pH and the efficiency was not altered for the preconcentration of the metal ions during all the experiments.  相似文献   

6.
A new method has been developed for the determination of trace rare earth elements (REEs) in water samples based on preconcentration with a microcolumn packed with multiwalled carbon nanotubes (MWNTs) prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimum experimental parameters for preconcentration of REEs, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been investigated. The studied REEs ions can be quantitatively retained by MWNTs when the pH exceed 3.0, and then eluted completely with 1.0 mol L−1 HNO3. The detection limits of this method for REEs was between 3 and 57 ng L−1, and the relative standard deviations (RSDs) for the determination of REEs at 10 ng mL−1 level were found to be less than 6% when processing 100 mL sample solution. The method was validated using a certified reference material, and has been successfully applied for the determination of trace rare earth elements in lake water and synthetic seawater with satisfactory results.  相似文献   

7.
Traces of heavy metals were separated and preconcentrated electrochemically at a controlled potential on the graphite ridge probe. After the electrolysis, the electrode-probe was inserted in the graphite furnace for atomization of metal deposit by an automatic system. Conditions for the electrodeposition, such as pH of solutions, the deposition potential and concentration of electrolyte, were optimized. Detection limits improved with increased time of electrodeposition and were 16 ng l−1 Cu, 1.0 ng l−1 Cd, 6.0 ng l−1 Pb, 64 ng l−1 Ni, 14 ng l−1 Cr (III) and 17 ng l−1 Cr (VI) for a 10-min deposition. This method was applied for the determination of copper, cadmium, lead, nickel and of chromium species in seawater.  相似文献   

8.
In this work, a bulk liquid membrane method has been applied for Ni enrichment and separation from natural waters. The carrier-mediated transport was accomplished by pyridine-2-acetaldehyde benzoylhydrazone dissolved in toluene as a complexing agent. The preconcentration was achieved through pH control of source and receiving solutions via a counterflow of protons. The main variables were optimized by using a modified simplex technique. High transport efficiencies (101.2 ± 1.8–99.7 ± 4.2%) were provided by the carrier for nickel ions in a receiving phase of 0.31 mol L−1 nitric acid after 9–13 h depending on sample salinity. The precision of the method was 2.05% (without a saline matrix) and 4.04% (with 40 g L−1 NaCl) at the 95% confidence level and the detection limit of the blank was 0.015 μg L−1 Ni for detection by atomic absorption spectroscopy. The applicability of the method was tested on certified reference and real water samples with successful results, even for saline samples. The relative errors were −0.60% for certified reference materials and ranged from −0.39 to 2.90% and from 0.3 to 11.05% for real samples, obtained by comparison of inductively coupled plasma mass spectrometry and adsorptive cathodic stripping voltammetry measurements, respectively.  相似文献   

9.
A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L− 1) and a relative standard deviation (2.5% at 50 ng L− 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4–264.8 ng L− 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.  相似文献   

10.
The separation of Cd(II) and Ni(II) ions was studied in an aqueous sulphate medium using supported liquid membrane (SLM). D2EHPA/M2EHPA was used as a mobile carrier, microporous hydrophobic PTFE film was used as a solid support for the liquid membrane, and the strip phase was sulphuric acid. The effects of different parameters such as feed concentration, carrier concentration, feed phase pH, and strip phase pH on the separation factor and flux of Cd(II) and Ni(II) ions were studied. The optimum values obtained to achieve the maximum flux were 5.0 for feed pH, 40 vol. % for D2EHPA/M2EHPA concentration in the membrane phase, 0.5 for strip pH, and 0.012 mass % for feed concentration. Under these optimum conditions, the flux values of Cd(II) and Ni(II) were 15.7 × 10?7 kg m?2 s?1 and 2.6 × 10?7 kg m?2 s?1, respectively. The separation factors of Cd(II) over Ni(II) were studied under different experimental conditions. At a carrier concentration of 10 vol. % and feed concentration of 0.012 mass %, the maximum value of 185.1 was obtained for the separation factor of Cd(II) over Ni(II). After 24 h, the percentages of the extracted Cd(II) and Ni(II) were 83.3 % and 0.45 %, respectively.  相似文献   

11.
This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l 1 HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 μl) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0–20 min), Triton X114 concentration (0.043–0.87% w/v) and complexing agent concentration (0.01–0.1 mol l 1), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 °C), and the electrolyte concentration (0.5–5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 μg l 1 and 2.9 μg l 1 Cd, respectively, and a linear calibration range from 3 to 400 μg l 1 Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco).  相似文献   

12.
A method for the preconcentration and speciation of chromium was developed. On-line preconcentration and determination were obtained using inductively coupled plasma optical emission spectrometry (ICP-OES) coupled with flow injection. To determinate the chromium (III) present in parenteral solutions, chromium was retained on activated carbon at pH 5.0. On the other hand, a step of reduction was necessary in order to determine total chromium content. The Cr(VI) concentration was then determined by difference between the total chromium concentration and that of Cr(III). A sensitivity enrichment factor of 70-fold was obtained with respect to the chromium determination by ICP-OES without preconcentration. The detection limit for the preconcentration of 25 ml of sample was 29 ng l−1. The precision for the 10 replicate determinations at the 5 μg l−1 Cr level was 2.3% relative standard deviation, calculated with the peak heights. The calibration graph using the preconcentration method for chromium species was linear with a correlation coefficient of 0.9995 at levels near the detection limits up to at least 60 μg l−1. The method can be applied to the determination and speciation of chromium in parenteral solutions.  相似文献   

13.
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg–DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l 1 for Hg2+ and 2.0 ng l 1 for CH3Hg+. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l 1 of Hg2+ and CH3Hg+ were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.  相似文献   

14.

The purpose of the present work is to develop a simple, rapid, sensitive and accurate method for the derivatization and subsequently preconcentration of Hg(II) and the determination of its derivative, diphenylmercury, in natural water samples using gas chromatography-flame ionization detection. The method is based on the diphenylation using phenyl boronic acid, subsequent extraction of phenylmercury into a single drop of an organic solvent (toluene), followed by gas chromatography-flame ionization detection GC-FID analysis of the extract. The pH of the feed solution was kept in pH 5 with acetate buffer solution. Thus, the optimized conditions are: organic solvent, toluene; derivatization time, 10 min; extraction time, 15 min; microdrop volume, 1.6 μL; stirring rate, 600 rpm; sample volume, 5 mL. The limit of detection (LOD), calculated on the basis of five replicates was 0.02 μg mL−1. The relative standard deviation of the method (RSD%, n = 5) was 3.0. Linear range was between 0.05 and 5 μg mL−1 and preconcentration factor obtained for phenyl-mercury was 105.

  相似文献   

15.
The investigation of trace metal contents in hair can be used as an index of exposure to potentially toxic elements. Direct determination of Cd, Cu and Pb in slurries of hair samples was investigated using an atomic absorption spectrometer with Zeeman-effect background correction. The samples were pulverized in a freezer/mill for 13 min, and hair slurries with 1.0 g l−1 for the determination of Cu and Pb, and 5.0 g l−1 for the determination of Cd, respectively, were prepared in three different media: 0.1% v/v Triton X-100, 0.14 mol l−1 HNO3, and 0.1% v/v of CFA-C, a mixture of tertiary amines. The easiest way to manipulate the hair samples was in CFA-C medium. The optimum pyrolysis and atomization temperatures were established with hair sample slurries spiked with 10 μg l−1 Cd2+, 30 μg l−1 Pb2+, and 10 μg l−1 Cu2+. For Cd and Pb, Pd was used as a chemical modifier, and for Cu no modifier was needed. The analyte addition technique was used for quantification of Cd, Cu, and Pb in hair sample slurries. A reference material (GBW076901) was analyzed, and a paired t-test showed that the results for all elements obtained with the proposed slurry sampling procedure were in agreement at a 95% confidence level with the certified values. The cryogenic grinding was an effective strategy to efficiently pulverize hair samples.  相似文献   

16.
D. Point  G. Bareille  C. Belin 《Talanta》2007,72(3):1207-1216
An integrated approach for the accurate determination of total, labile and organically bound dissolved trace metal concentration in the field is presented. Two independent automated platforms consisting of an ultraviolet (UV) on-line unit and a chelation/preconcentration/matrix elimination module were specifically developed to process samples on-site to avoid sample storage prior to inductively coupled plasma mass spectrometry (ICP-MS) analysis. The speciation scheme allowed simultaneous discrimination between labile and organic stable dissolved species of seven trace elements including Cd, Cu, Mn, Ni, Pb, U and Zn, using only 5 ml of sample with detection limits ranging between 0.6 ng l−1 for Cd and 33 ng l−1 for Ni. The influence of UV photolysis on organic matter and its associated metal complexes was investigated by fluorescence spectroscopy and validated against natural samples spiked with humic substances standards. The chelation/preconcentration/matrix elimination procedure was validated against an artificial seawater spiked sample and two certified reference materials (SLRS-4 and CASS-4) to ensure homogenous performance across freshwater, estuarine and seawater samples. The speciation scheme was applied to two natural freshwater and seawater samples collected in the Adour Estuary (Southwestern, France) and processed in the field. The results indicated that the organic complexation levels were high and unchanged for Cu in both samples, whereas different signatures were observed for Cd, Mn, Ni, Pb, U and Zn, suggesting organic ligands of different origin and/or their transformation/alteration along estuarine water mixing.  相似文献   

17.
A robust flow injection (FI) on-line liquid-liquid extraction (LLE) preconcentration/separation system associated with a newly designed gravitational phase separator, coupled to flame atomic absorption spectrometry (FAAS) was developed. The performance of the system was illustrated for cadmium determination at the μg l−1 level. The non-charged cadmium complex with ammonium pyrrolidine dithiocarbamate (APDC) was extracted on-line into isobutyl methyl ketone (IBMK). The organic phase was effectively separated from a large volume of aqueous phase and is led into a 100 μl loop of an injection valve before its introduction into the nebulizer. The system was optimized and offered good performance characteristics with unlimited life time of phase separator, greater flow rate ratios and improved flexibility, as compared with other solvent extraction preconcentration systems. With a sampling frequency of 33 h−1, the enhancement factor was 155, the detection limit was 0.02 μg l−1, the relative standard deviation was 3.2% at 2.0 μg l−1 Cd concentration level and the calibration curve was linear over the concentration range 0.06-6.0 μg l−1. The accuracy of the proposed method was evaluated by analyzing a certified reference material of water and by recovery measurements on spiked samples. Finally, it was successfully applied to the analysis of tapwater, river and seawater samples.  相似文献   

18.
A new and sensitive method for Cd and Pb determinations, based on the coupling of thermospray flame furnace atomic absorption spectrometry and a preconcentrator system, was developed. The procedure comprised the chelating of Cd and Pb with ammonium pyrrolidinedithiocarbamate with posterior adsorption of the chelates on a mixture (40 mg) of C60 and C70 at a flow rate of 2.0 ml min−1. These chelates were eluted from the adsorbent by passing a continuous flow of ethanol (80% v/v) at 0.9 ml min−1 to a nickel tube placed in an air/acetylene flame. After sample introduction into the tube by using a ceramic capillary (0.5 mm i.d.), the analytical signals were registered as peak height. Under these conditions, improvement factors in detectability of 675 and 200 were obtained for Cd and Pb, respectively, when compared to conventional flame atomic absorption spectrometry. Spiked samples (mineral and tap waters) and drinking water containing natural concentrations of Cd were employed for evaluating accuracy by comparing the results obtained from the proposed methodology with those using electrothermal atomic absorption spectrometry. In addition, certified reference materials (rye grass, CRM 281 and pig kidney, CRM 186) were also adopted for the accuracy tests. Due to the good linearity ranges for Cd (0.5–5.0 μg l−1) and Pb (10–250 μg l−1), samples with different concentrations could be analyzed. Detection limits of 0.1 and 2.4 μg l−1 were obtained for Cd and Pb, respectively, and RSD values <4.5% were observed (n=10). Finally, a sample throughput of 24 determinations per hour was possible.  相似文献   

19.
A micro-scale flow system is proposed for on-line preconcentration of Cd, Cu, Mn, Ni and Pb in saliva samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). A small column containing 8 μl of AG50W-X8 resin was inserted into the flow system, assembled with capillary tubes and connected to a micro-concentric nebulizer. The elution of the analytes was performed with 3 mol l−1 HCl at a flow rate of 82 μl min−1. The ICP-OES signal acquisition program permits measurements for 5 s in the concentrated portion of the transient elution peaks. A sample volume of 1 ml was required to obtain enrichment factors of 46, 23, 17, 18 and 44 for Cd, Cu, Mn, Ni and Pb, respectively. The relative standard deviations for a 50-μg l−1 multi-analyte solution were ≤6.5%. The recoveries for Cd, Cu, Mn, Ni and Pb in digested human saliva samples were between 86 and 111%. The sample throughput was 24 h−1.  相似文献   

20.
A syringe-driven chelating column (SDCC) was applied to develop an on-line preconcentration/inductively coupled plasma mass spectrometry (ICP-MS) method for preconcentration and determination of rare earth elements (REEs) in seawater samples. The present on-line preconcentration system consists of only one pump, two valves, an SDCC, an ICP-MS, several connectors, and Teflon tubes. Optimizations of adsorption pH condition, sample loading flow rate, and integration range were carried out to achieve optimum measurement conditions for REEs in seawater sample. Six minutes was enough for a preconcentration and measurement cycle using 10 mL of seawater sample, where the detection limits for different REEs were in the range of 0.005 pg mL−1 to 0.09 pg mL−1. Analytical results of REEs in a seawater certified reference material (CRM), NASS-5, confirmed the usefulness of the present method. Furthermore, concentrations of REEs in Nikkawa Beach coastal seawater were determined and discussed with shale normalized REE distribution pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号