首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Fluid Phase Equilibria》2006,242(2):154-163
Phase equilibria, for the binary systems {n-alkanes (tridecane, octadecane, or eicosane), or cyclohexane, or 1-alkanol (1-hexadecanol, or 1-octadecanol, or 1-eicosanol) + 2,3-pentanedione} have been determined using a cryometric dynamic method at atmospheric pressure. The influence of pressure on liquidus curve up to 800 MPa was determined for (tridecane, or cyclohexane + 2,3-pentanedione) systems. A thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions (pressometry) was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high-pressure experimental results obtained at isothermal conditions (px) were interpolated to well known Tx diagrams.Immiscibility in the liquid phase was observed only for the n-alkanes mixtures. The solubility decreases with an increase of the number of carbon atoms in the n-alkane, or 1-alkanol chain. The higher intermolecular solute–solvent interaction was observed for the 1-alkanols.Experimental solubility results are compared with values calculated by means of the NRTL equation (n-alkanes) and the NRTL and UNIQUAC ASM equations utilizing parameters derived from SLE and LLE results. The existence of a solid–solid first-order phase transition in tridecane, eicosane and 1-alkanols has been taken into consideration in the calculations. The correlation of the solubility data has been obtained with the average root-mean-square deviation of temperature σ < 1.0 K with both equations. The pressure–temperature–composition relation of the high-pressure (solid + liquid) phase equilibria, was satisfactorily presented by the polynomial.  相似文献   

2.
The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2)} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used.Additionally, the SLE in binary mixture that contain {1-octanol (1) + CCA (2)} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (px) were interpolated to more convenient Tx diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model.The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid–solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC).  相似文献   

3.
4.
《Fluid Phase Equilibria》2006,240(1):109-113
Vapour–liquid equilibria at atmospheric pressure for binary mixtures of n-heptane + bromobenzene, +chlorobenzene and +fluorobenzene have been determined. These have been shown to be thermodynamically consistent.  相似文献   

5.
《Fluid Phase Equilibria》2002,201(2):401-407
Phase equilibria and saturated densities for ethane+1-butanol system at high pressures were measured using a static-circulation apparatus at 313.15 K. The experimental apparatus equipped with three Anton Paar DMA 512S vibrating tube density meters was previously developed for measuring vapor–liquid–liquid equilibrium (VLLE) at high pressures. Co-existing phase composition and saturated density of each phase can be measured by means of the apparatus with a maximum temperature and pressure of 400 K and 20 MPa, respectively. The present experimental results include vapor–liquid equilibria (VLE), liquid–liquid equilibria (LLE), and VLLE. The equilibrium composition and density of each phase were determined by gas chromatography and density measurements, respectively. The experimental data were correlated with various equations of state.  相似文献   

6.
Binary liquid + liquid phase equilibria for 8 systems containing N-octylisoquinolinium thiocyanate, [C8iQuin][SCN] and aliphatic hydrocarbon (n-hexane, n-heptane), cyclohexane, aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene) and thiophene have been determined using dynamic method. The experiment was carried out from room temperature to the boiling-point of the solvent at atmospheric pressure. For the tested binary systems the mutual immiscibility with an upper critical solution temperature (UCST) for {IL + aliphatic hydrocarbon, or thiophene} were observed. The immiscibility gap with lower critical solution temperature (LCST) for the {IL + aromatic hydrocarbon} were determined. The parameters of the LLE correlation equation for the tested binary systems have been derived using NRTL equation. The phase equilibria diagrams presented in this paper are compared with literature data for the corresponding ionic liquids with N-alkylisoquinolinium, or N-alkylquinolinium cation and with thiocyanate – based ionic liquids. The influence of the ionic liquid structure on mutual solubility with aliphatic and aromatic hydrocarbons and thiophene is discussed.  相似文献   

7.
《Fluid Phase Equilibria》2003,210(1):69-75
Vapour–liquid, liquid–liquid and liquid–liquid–vapour equilibria for the system 1,1,1,2-tetrafluoroethane + heptylbenzene were determined in the temperature range from 260 to 400 K and at pressures up to 12 MPa. The system was found to be a type II system according to the classification of Van Konynenburg and Scott. The (l2=l1)g critical endpoint was found at T=320.07 K and P=1.155 MPa. The mole fraction of heptylbenzene in the critical liquid phase in the critical endpoint is approximately 0.20.  相似文献   

8.
《Fluid Phase Equilibria》2005,238(2):137-141
The liquid–liquid equilibria (LLE) of eight binary systems containing 1-methylimidazole and n-alkanes (n-pentane, n-hexane), cyclohydrocarbons (cyclopentane, cyclohexane), aromatic hydrocarbons (hexylbenzene) or ethers (di-n-propyl ether, di-n-butyl ether, di-n-pentyl ether) have been measured from 270 K to the boiling temperature of the solvent using a “cloud point” method. Experimental solubility results are compared with values calculated by means of the NRTL equation utilizing parameters derived from LLE results.Solubility of 1-methylimidazole in many other organic solvents (aromatic hydrocarbons, branch chain ethers and ketones) has been measured at temperatures higher than 293 K and no miscibility gap was observed. The interaction of 1-methylimidazole with different solvents is discussed.  相似文献   

9.
(Solid + liquid) equilibria (SLE) prediction are an important phase equilibria property for ionic liquid (IL) mixtures especially when the IL exists as a solid. In this work, the SLE for the binary systems of (IL + thiophene) consisting of the ILs: n-butyl-4-methylpyridinium tosylate [BM4Py][TOS], n-butyl-3-methylpyridinium tosylate [BM3Py][TOS], n-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], and 1,4-dimethylpyridinium tosylate [M1,4Py][TOS] are predicted using the quantum chemical based COSMO-RS (COnductor like Screening MOdel for Real Solvents) model. Initially, benchmarking studies are performed on binary mixtures which are known beforehand. The values of the predicted solubility are then compared with the experimental results by calculating the root mean square error (RMSE). The SLE predictions of the solubility of pyrene and dibenzothiophene in five different solvents were carried out giving an average RMSE of 4%. Further the applicability of COSMO-RS to binary systems consisting of (ionic liquid + alcohol) mixtures and (ionic liquid + hydrocarbons) are predicted. The ionic liquids concerned are n-butyl-3-methylpyridinium tosylate [BM3Py][TOS] while the alcohols and hydrocarbons are 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and benzene, toluene, ethylbenzene, n-propylbenzene respectively. The experimental data for the ionic liquid [BM4Py][TOS] with thiophene gave the smallest deviation of 10.2%. The overall RMSE for IL–thiophene, IL–alcohol, and IL–hydrocarbons were 15%, 17.2% and 12.9% respectively. Thus the predicted solubility values were found to be in reasonable agreement with the experimental values.  相似文献   

10.
(Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) 1-butyl-3-methylimidazolim tosylate (p-toluenesulfonate) {[BMIM][TOS] + water, an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or n-hexane, or an aromatic hydrocarbons (benzene, or toluene, or ethylbenzene, or propylbenzene, or thiophene)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (230 to 340) K. For the binary systems containing water, or an alcohol, simple eutectic diagrams were observed with complete miscibility in the liquid phase. As usual, with increasing chain length of the alcohol the solubility decreases. In the case of mixtures {IL + n-hexane, or benzene, or alkylbenzene, or thiophene} the eutectic systems with mutual immiscibility in the liquid phase with an upper critical solution temperature (UCST) were detected. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). Density at high temperatures was determined and extrapolated to 298.15 K. Well-known UNIQUAC, Wilson and NRTL equations have been used to correlate experimental SLE data sets for alcohols and water. For the systems containing immiscibility gaps {IL + n-hexane, or benzene, or alkylbenzene, or thiophene}, parameters of the LLE correlation equation have been derived using only the NRTL equation.  相似文献   

11.
《Fluid Phase Equilibria》2005,233(2):123-128
Isobaric vapor–liquid equilibria for the binary mixtures of tert-butanol (TBA) + 2-ethyl-1-hexanol and n-butanol (NBA) + 2-ethyl-1-hexanol were experimentally investigated at atmospheric pressure in the temperature range of 353.2–458.2 K. The raw experimental data were correlated using the UNIQUAC and NRTL models and used to estimate the interaction parameters between each pair of components in the systems. The experimental activity coefficients were obtained using the gas chromatographic method and compared with the calculated data obtained from these equilibrium models. The results show that UNIQUAC model gives better correlation than NRTL for these binary systems. The liquid–liquid extraction of TBA from aqueous solution using 2-ethyl-1-hexanol was demonstrated by simulation and the variation of separation factor of TBA at several temperatures was reported.  相似文献   

12.
13.
《Fluid Phase Equilibria》2005,227(1):135-143
Solid–liquid equilibria (SLE), have been measured from 270 K to the boiling temperature of the solvent for 10 binary mixtures of N-methyl-2-pyrrolidinone, with ethers (dipropyl ether, dibutyl ether, dipentyl ether, methyl 1,1-dimethylethyl ether, methyl 1,1-dimethylpropyl ether, ethyl 1,1-dimethylpropyl ether, 1,4-dioxane, tetrahydrofuran, tetrahydropyran, 18-crown-6) using a dynamic method. The solubility of N-methyl-2-pyrrolidinone in ethers is lower than in alcohols and generally decreases with an increase of the number of carbon atoms of ether chain. The highest intermolecular solute–solvent interaction is observed for the cyclic ethers and for methyl 1,1-dimethylethyl ether.Experimental solubility results are compared with values calculated by means of the Wilson, UNIQUAC ASM and two NRTL equations utilizing parameters derived from SLE results. The existence of a solid–solid first-order phase transition in 18-crown-6 ether has been taken into consideration in the calculations. The correlation of the solubility data has been obtained with the average root-mean-square deviation of temperature σT = 0.9 K with UNIQUAC ASM and two NRTL equations and 0.6 K with the Wilson equation.  相似文献   

14.
(Solid + liquid) phase equilibria (SLE) of (n-hexadecane, or n-octadecane + 3-methylpentane, or 2,2-dimethylbutane, or benzene) at very high pressures up to about 1.0 GPa have been investigated at the temperature range from T = (293 to 353) K. The thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions was used. The pressure-temperature-composition relation of the high pressure (solid + liquid) phase equilibria, polynomial based on the general solubility equation at atmospheric pressure was satisfactorily used. Additionally, the SLE of binary systems (n-hexadecane, or n-octadecane + 3-methylpentane, or 2,2-dimethylbutane, or benzene, or n-hexane or cyclohexane) at normal pressure was discussed. The results at high pressures were compared for every system to these at normal pressure. The influence of the size and shape effects on the solubility at 0.1 MPa and high pressure up to 600 MPa was discussed.The main aim of this work was to predict the mixture behaviour using only pure components data and cubic equation of state in the wide range of pressures, far above the pressure range which cubic equations of state are normally applied to. The fluid phase behaviour is described by the corrected SRK-EOS and the van der Waals one fluid mixing rules.  相似文献   

15.
《Fluid Phase Equilibria》2002,202(2):289-306
Vapor–liquid phase equilibria in the binary system n-pentane+poly(dimethylsiloxane) (PDMS) have been investigated experimentally at temperatures ranging from 308.15 to 423.15 K. The experiments have been performed at pentane mass fractions in the liquid phase ranging from 0 to 80% using the static method. PDMS with average molecular weights of 26 500 g/mol and 103 000 g/mol has been used. The data are in good agreement with several literature data by other researchers, mostly obtained by the use of inverse gas chromatography. The experimental data could be correlated well using the Flory–Huggins activity coefficient model for the polymer phase and the Peng–Robinson equation of state for the gas phase. Using statistical associating fluid theory (SAFT), it was only possible to reproduce the experimentally determined equilibria after adjusting the pure-component parameters of the polymer to the binary equilibria.Further, experimental data have been obtained for the R22 (difluorochloromethane)+PDMS system at 298.15 and 343.15 K.  相似文献   

16.
《Fluid Phase Equilibria》2006,239(2):133-137
Vapour–liquid equilibria at atmospheric pressure have been determined for binary mixtures of 1,2-dibromoethane + 1,2-dichloroethane, +trichloromethane, and +1,1,2,2-tetrachloroethane. These have been shown to be thermodynamically consistent.  相似文献   

17.
《Fluid Phase Equilibria》2002,193(1-2):109-121
Isothermal vapor–liquid equilibrium (VLE) data at 353.15 K and excess molar volumes (VE) at 298.15 K are reported for the binary systems of ethyl acetate (EA)+cyclohexane and EA+n-hexane and also for the ternary systems of EA+cyclohexane+2-methyl pyrazine (2MP) and EA+n-hexane+2MP. The experimental binary VLE data were correlated with common gE model equations. The correlated Wilson parameters of the constituent binary systems were used to calculate the phase behavior of the ternary mixtures. The calculated ternary VLE data using Wilson parameters were compared with experimental ternary data. The experimental excess molar volumes were correlated with the Redlich–Kister equation for the binary mixtures, and Cibulka’s equation for the ternary mixtures.  相似文献   

18.
The (vapor + liquid) equilibrium data for binary systems of (methane + methanol), (methane + ethanol), and (methane + 1-propanol) at ambient temperature over a wide range of pressures, (1 to 8) MPa, were measured using a designed pressure–volume–temperature (PVT) apparatus. The phase composition and saturated density of liquid phase were measured for each pressure. The density of pure methanol, ethanol and 1-propanol was also measured at ambient temperature over a wide range of pressure (1 to 10) MPa. The experimental (vapor + liquid) equilibrium data were compared with the modeling results obtained using the Peng–Robinson and Soave–Redlich–Kwong equations of state. To improve the predictions, the binary interaction parameters were adjusted and the volume translation technique was applied. Both equations of state were found to be capable of describing the phase equilibria of these systems over the range of studied conditions. The Soave–Redlich–Kwong equation of state gave better predictions of saturated liquid densities than Peng–Robinson equation of state.  相似文献   

19.
Isothermal (vapour + liquid) equilibrium data, (VLE) have been measured by an ebulliometric method for the binary mixtures of ionic liquid (IL) {N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BMPy][TOS] + ethanol, 1-propanol, and 1-butanol} at T = 373.15 K over the pressure range from p = 0 kPa to p = 110 kPa. (Solid + liquid) phase equilibria (SLE) for the binary systems: ionic liquid (IL) {N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BMPy][TOS] + ethanol and 1-propanol} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (320 to 390) K. For the binary systems containing alcohol, it was noticed that with increasing chain length of alcohol vapour pressure of the mixture and the solubility of the IL decreases. Well-known Wilson, NRTL, and UNIQUAC equations have been used to correlate simultaneously the experimental VLE and SLE data sets with the same parameters. The excess molar Gibbs free energy, GE function in general was negative in all systems at high temperature (VLE) and positive at low temperatures (SLE).  相似文献   

20.
《Fluid Phase Equilibria》2002,201(2):343-358
A static total pressure apparatus was build. Isothermal vapour–liquid equilibrium of two binary systems, 2-methylpentane+2-butanol at 329.2 K and n-hexane+2-butanol at 329.2 K and 363.2 K were measured. The results of the 2-methylpentane+2-butanol measurements were compared with earlier measurements made with a recirculation still and good agreement was found. The ability of estimation methods (UNIFAC and modified UNIFAC Dortmund) to predict the measured data was tested. The capability of the original UNIFAC to predict the behaviour of the systems measured was worse than the performance of the modified UNIFAC Dortmund.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号