首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental tie-line data for ternary system of (water + 1,3-butanediol (1,3-BD) + 2-ethyl-1-hexanol (2EH)) were determined at T = (298.2, 303.2 and 308.2) K under atmospheric conditions. This ternary system exhibits type-1 behavior of LLE. The experimental ternary LLE data were correlated using the NRTL model, and the binary interaction parameters were obtained. The average root-mean-square deviation between the observed and calculated mole fractions was 1.38%. Distribution coefficient and separation factor were measured to evaluate the extracting capability of the solvent. The separation factor values for the solvent used in this work were then compared with literature values obtained in our previous works for other butanediols.  相似文献   

2.
《Fluid Phase Equilibria》2005,233(2):123-128
Isobaric vapor–liquid equilibria for the binary mixtures of tert-butanol (TBA) + 2-ethyl-1-hexanol and n-butanol (NBA) + 2-ethyl-1-hexanol were experimentally investigated at atmospheric pressure in the temperature range of 353.2–458.2 K. The raw experimental data were correlated using the UNIQUAC and NRTL models and used to estimate the interaction parameters between each pair of components in the systems. The experimental activity coefficients were obtained using the gas chromatographic method and compared with the calculated data obtained from these equilibrium models. The results show that UNIQUAC model gives better correlation than NRTL for these binary systems. The liquid–liquid extraction of TBA from aqueous solution using 2-ethyl-1-hexanol was demonstrated by simulation and the variation of separation factor of TBA at several temperatures was reported.  相似文献   

3.
Dielectric relaxation and dynamic heat capacity measurements are compared for 2-ethyl-1-hexanol near its glass transition temperature Tg in order to further clarify the origin of the prominent Debye-type loss peak observed in many monohydroxy alcohols and other hydrogen-bonding liquids. While the dielectric spectrum epsilon" displays two distinct polarization processes that are separated by a factor of 2000 in terms of the peak frequency, the heat capacity cp" shows only a single peak. The dielectric process with lower amplitude and higher peak frequency coincides with the calorimetric signal, whereas the large dielectric Debye signal is not associated with calorimetric modes. The authors conclude that the Debye process corresponds to a transition among states which differ in energy only in the case of an external electric field.  相似文献   

4.
The group method of data handling (GMDH) method was used to estimate (vapour + liquid) equilibrium (VLE) for the binary systems of (tert-butanol + 2-ethy1-1-hexanol) and (n-butanol + 2-ethy1-1-hexanol). Using this method, a new model was proposed, which is suitable for predicting the VLE data. In this publication, the proposed model was ‘trained’ before requested predictions. The data set was divided into two parts: 70% were used as data for ‘training’ (either 10 or 12), and 30% were used as a test set, which were randomly extracted from the database (either 14 or 16). After the training on the input–output process, the predicted values were compared with those of experimental values in order to evaluate the performance of the GMDH neural network method. The model values showed a very good regression with the experimental results.  相似文献   

5.
Experimental results of dielectric investigations for solutions of the three butanediols {2,3-butanediol (2,3BD), 1,3-butanediol (1,3BD), and 1,4-butanediol (1,4BD)}, in 1,4-dioxane (1,4DX) are reported for various mole fractions at T = 298.2 K. Values of relative permittivity were measured at 100 kHz. The molecular dipole moments were determined using Guggenheim method. The variations of effective dipole moment and correlation factor, g, with mole fraction in these materials were investigated using Kirkwood–Frohlich equation. Dielectric measurements were also carried out on binary polar mixtures of the butanediols with 2-ethyl-1-hexanol (2EH) for various concentrations at T = 298.2 K. The Kirkwood correlation factor, the Bruggeman factor, and the excess permittivity were determined.  相似文献   

6.
The parameters of non-linearity (B/A) of ternary liquid mixtures, namely phenol and o-cresol with dimethyl sulfoxide (DMSO) in carbon tetrachloride have been evaluated at 293.15, 303.15 and 313.15?K. The non-linearity parameter has been computed by three different methods, namely Tong and Dong's method, Beyer's method and Beyer's method using Tong–Dong coefficients. The excess values of non-linearity parameter (B/A)E have also been evaluated and discussed in the light of intermolecular interactions present in the liquid mixtures. Sehgal's relations for evaluating molecular properties for pure liquids are extended to ternary liquid mixtures.  相似文献   

7.
The dehydrogenation of 2-ethyl-l-hexanol to 2-ethylhexanal by hydrogen exchange with aliphatic aldehydes has been studied over MgO. As hydrogen acceptors acetaldehyde, propionaldehyde and isobutyraldehyde were used. Reaction with propionaldehyde was found to be an effective synthetic route for 2-ethylhexanal preparation, whereas during reactions with acetaldehyde and isobutyraldehyde a gradual catalyst deactivation vs. time-on-stream was observed.Part V in Stud. Surf. Sci. Catal., 78, 631 (1993) Fine Chemicals III), and references therein.  相似文献   

8.
《Fluid Phase Equilibria》2004,218(2):247-260
Density (ρ) and viscosity (η) values of the binary mixtures of phenetole+1-pentanol, + 1-hexanol, + 1-heptanol, + 1-octanol, + 1-nonanol, and + 1-decanol over the entire range of mole fraction at 293.15, 298.15, 308.15, and 318.15 K have been measured at atmospheric pressure. The excess molar volume (VE), viscosity deviations (Δη), and excess Gibbs energy of activation (G*E) have been calculated from the experimental measurements. These results were fitted to Redlich and Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of Grunberg and Nissan, Hind et al., Frenkel, and McAllister. While the excess molar volumes of phenetole+1-pentanol, + 1-hexanol are positive, the remaining binary mixtures are negative. The viscosity deviations and excess Gibbs energy of activation are negative for all investigated systems. As the chain length of 1-alkanols increases, both viscosity deviations and excess molar volume values decrease while excess Gibbs energy of activation value increase. The temperature has no effect on excess molar volume, slight effect on excess Gibbs energy of activation, and significant effect on viscosity deviations. The calculated functions have been used to explain the intermolecular interaction between the mixing components.  相似文献   

9.
Artificial neural networks (ANNs) were successfully developed for the modeling and prediction dielectric constant of different ternary liquid mixtures at various temperatures (?10°C?≤?t?≤?80°C) and over the complete composition range (0?≤?x 1,?x 2,?x 3?≤?1). A three-layered feed forward ANN with architecture 7-16-1 was generated using seven parameters as inputs and its output is dielectric constant of media. It was found that properly selected and trained neural network could fairly represent the dependence of dielectric constant of different ternary liquid mixtures on temperature and composition. For the evaluation of the predictive power of the generated ANN, an optimized network was applied for predicting the dielectric constant in the prediction set, which were not used in the modeling procedure. Squared correlation coefficient (R 2) and root mean square error for prediction set are 0.9997 and 0.2060, respectively. The mean percent deviation (MPD) for the property in the prediction set is 0.8892%. The results show nonlinear dependence of dielectric constant of ternary mixed solvent systems on temperature and composition is significant.  相似文献   

10.
Densities and speeds of sound of the cyclopentane with 2-propanol, 1-butanol and 2-butanol are measured over the whole composition range at different temperatures in the range 288.15–308.15 K and atmospheric pressure using Anton Paar DSA 5000 densimeter. The experimental densities and speeds of sound have been used to calculate excess molar volumes, excess molar isentropic compressibilities and excess intermolecular free length. The partial molar volumes and apparent molar volumes at infinite dilution have also been calculated. The mixing quantities like (∂V mE/∂T)P and (∂H mE/∂P)T have been calculated at T = 298.15 K and these values are compared with the values calculated from Flory’s theory at equimolar composition.  相似文献   

11.
The thermal diffusion behavior of acetone/water and dimethylsulfoxide(DMSO)/water mixtures has been experimentally investigated by a transient holographic grating technique named thermal diffusion forced Rayleigh scattering (TDFRS). For both systems a sign change of the Soret coefficient S(T) with varying water content has been predicted by simulations [C. Nieto Draghi et al., J. Chem. Phys. 122, 114503 (2005)]. The sign change of S(T) is confirmed by the experiment. Except for equimolar concentrations of acetone/water the agreement between the experimental and simulation data is reasonable.  相似文献   

12.
Kinetics of the base hydrolysis of 6-nitro-2H-chromen-2-one (NC) and 6-nitro-2H-chromen-2-one-3-carboxylic acid (NCC) in water-methanol and water-acetone mixtures was studied at temperature range from 283 to 313 K. The activation parameters of the reactions were evaluated and discussed. The change in the activation barrier of the investigated compounds from water to water-methanol and water-acetone mixtures were estimated from the kinetic data. The base hydrolysis of NC and NCC in the water-methanol and water-acetone mixtures follows a rate law with k obs = k 2[OH] and k obs = k 1 + k 2[OH], respectively. The decrease in the rate constants of NC and NCC hydrolysis, as the proportion of methanol and acetone increases, is accounted for by the destabilization of the OH ion. The activation and thermodynamic parameters were determined.  相似文献   

13.
Density (ρ), viscosity (η), and speed of sound (U) values for the binary mixture systems of methyl benzoate + 2-propanol and ethyl benzoate + 2-propanol including those of pure liquids were measured over the entire mole fraction range at five different temperatures (303.15, 308.15, 313.15, 318.15, and 323.15) K. From these experimentally determined values, various thermo-acoustic parameters such as excess isentropic compressibility $ \left( {K_{\text{s}}^{\text{E}} } \right) $ , excess molar volume (V E) and excess free length $ \left( {L_{\text{f}}^{\text{E}} } \right) $ , excess Gibb’s free energy (ΔG *E), and excess enthalpy (H E) have been calculated. The excess functions have been fitted to the Redlich–Kister type polynomial equation. The deviations for excess thermo-acoustic parameters have been explained on the basis of the intermolecular interactions present in these binary mixtures. The theoretical values of speed of sound in the mixtures have been evaluated using various theories and have been compared with experimentally determined speed of sound values in order to check the applicability of such theories to the liquid mixture systems under study. Viscosity data have been used to test the applicability of standard viscosity models of Grunberg–Nissan, Hind–Mc Laughlin, Katti–Chaudhary, Heric and Brewer, Frenkel, Tamura and Kurata at various temperatures for the binary liquid systems under study.  相似文献   

14.
Relative permittivity measurements were made on binary mixtures of (1,2-butanediol + 2-ethyl-1-hexanol) and (1,2-butanediol + 1,4-dioxane) for various concentrations at T = (298.2, 308.2, and 318.2) K. The molecular dipole moments were determined using Guggenheim–Debye method in the temperature range of (298.2 to 318.2) K. The variations of effective dipole moment and correlation factor, g, with the mole fraction in these materials were investigated using Kirkwood–Frohlich equation. The pure compounds showed a negative and small temperature coefficient of effective dipole moment. In order to obtain valuable information about heterogeneous interaction (interactions between the unlike molecules), the Kirkwood correlation factor, the Bruggeman dielectric factor and the excess permittivity were calculated. In addition, in order to predict the permittivity data of polar-apolar binary mixtures, five mixing rules were applied.  相似文献   

15.
The enthalpies of solution of sodium iodide in methanol, ethanol and acetone and in mixtures of methanol and ethanol with water were measured over wide ranges of electrolyte concentration and temperature. Standard enthalpies of solution, transfer enthalpies of NaI from alcohols to alcohol-water mixtures, and temperature coefficients of enthalpies of solution have been calculated. Thermodyanmic characteristics of solution and solvation of the Na+ and I ions in acetone and ethanol were determined at 243–298 K. It is noted that at lower temperatures the disruption of solvent structure by ions is a local effect. The presence of negative solvation of the Na+ and I ions in alcohol-water mixtures at lower temperatures is demonstrated.  相似文献   

16.
Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson’s equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute–solute and solute–solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.  相似文献   

17.
Emf measurements were made on the cell without liquid junction: Li?ISE LiCl(m1), Li2SO4(m2) Ag/AgCl. The performances of the electrode pairs constructed in our laboratory were tested and exhibited near-Nernstian behavior. The mean activity coefficients of LiCl for the system Li+?Cl??SO 4 2? ?H2O have been investigated by the emf values at temperatures of 0, 15, 35°C and constant total ionic strengths of 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 5.0 mol·kg?1. The activity coefficients decrease with increasing temperature and the ionic strength fraction of Li2SO4 in the mixtures. The thermodynamic properties are interpreted by use of Harned's empirical equations and Pitzer's ion interaction approach including the contribution of higher order electrostatic terms. The experimental results obey Harned's rule and are described by using Pitzer equations satisfactorily. The activity coefficients of Li2SO4, the osmotic coefficients and the excess free energies of mixing for the system in the experimental temperature range were reported.  相似文献   

18.
Solvation characteristics of a ketocyanine dye have been studied in completely miscible ternary solvent mixtures, namely, methanol + acetone + water and methanol + acetone + benzene, by monitoring the solvatochromic absorption band of the dye. The maximum energy of absorption (E) of the solute in a ternary solvent mixture differs significantly from the mole fraction average of the E values in the component solvents. Results in the corresponding binary solvent mixtures also show a deviation of the E value from the mole fraction averaged E values. The results have been explained in terms of preferential solvation using a two phase model of solvation. The excess or deficit over the bulk composition of a solvent component in the vicinity of the solute molecule in a ternary solvent mixture has been estimated using the knowledge of solvation in the corresponding binary mixtures.  相似文献   

19.
At six temperatures T between 10 and 50 degrees C and at mole fractions x(g) of glycerol (0相似文献   

20.
(Vapour + liquid) equilibrium (VLE) data are important for designing and modelling of process equipment. Since it is not always possible to carry out experiments at all possible temperatures and pressures, generally thermodynamic models based on equations of state are used for estimation of VLE. In this paper, an alternate tool, i.e. the artificial neural network technique has been applied for estimation of VLE for the binary systems viz. (tert-butanol + 2-ethyl-1-hexanol) and (n-butanol + 2-ethyl-1-hexanol). The temperature range over which these models are valid is (353.2 to 458.2) K at atmospheric pressure. The average absolute deviation for the temperature output was in range 2% to 3.3%. The results were then compared with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号