首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present an analytical approach to evaluate the geometric measure of multiparticle entanglement for mixed quantum states. Our method allows the computation of this measure for a family of multiparticle states with a certain symmetry and delivers lower bounds on the measure for general states. It works for an arbitrary number of particles, for arbitrary classes of multiparticle entanglement, and can also be used to determine other entanglement measures.  相似文献   

2.
Persistent entanglement in arrays of interacting particles   总被引:18,自引:0,他引:18  
We study the entanglement properties of a class of N-qubit quantum states that are generated in arrays of qubits with an Ising-type interaction. These states contain a large amount of entanglement as given by their Schmidt measure. They also have a high persistency of entanglement which means that approximately N/2 qubits have to be measured to disentangle the state. These states can be regarded as an entanglement resource since one can generate a family of other multiparticle entangled states such as the generalized Greenberger-Horne-Zeilinger states of 相似文献   

3.
We quantify multiparticle quantum entanglement in a system of N two-level atoms interacting with a squeezed vacuum state of the electromagnetic field. We calculate the amount of quantum entanglement present among one hundred such two-level atoms and also show the variation of that entanglement with the radiation field parameter. We show the continuous variation of the amount of quantum entanglement as we continuously increase the number of atoms from N = 2 to N = 100. We also discuss that the multiparticle correlations among the N two-level atoms are made up of all possible bipartite correlations among the N atoms.  相似文献   

4.
5.
We present an approach to characterize genuine multiparticle entanglement by using appropriate approximations in the space of quantum states. This leads to a criterion for entanglement which can easily be calculated by using semidefinite programing and improves all existing approaches significantly. Experimentally, it can also be evaluated when only some observables are measured. Furthermore, it results in a computable entanglement monotone for genuine multiparticle entanglement. Based on this, we develop an analytical approach for the entanglement detection in cluster states, leading to an exponential improvement compared with existing schemes.  相似文献   

6.
We experimentally demonstrate a general criterion to identify entangled states useful for the estimation of an unknown phase shift with a sensitivity higher than the shot-noise limit. We show how to exploit this entanglement on the examples of a maximum likelihood as well as of a Bayesian phase estimation protocol. Using an entangled four-photon state we achieve a phase sensitivity clearly beyond the shot-noise limit. Our detailed comparison of methods and quantum states for entanglement enhanced metrology reveals the connection between multiparticle entanglement and sub-shot-noise uncertainty, both in a frequentist and in a Bayesian phase estimation setting.  相似文献   

7.
Linear-optics quantum logic operations enabled the observation of a four-photon cluster state. We prove genuine four-partite entanglement and study its persistency, demonstrating remarkable differences from the usual Greenberger-Horne-Zeilinger (GHZ) state. Efficient analysis tools are introduced in the experiment, which will be of great importance in further studies on multiparticle entangled states.  相似文献   

8.
Entanglement states serve as the central resource for a number of important applications in quantum information science, including quantum key distribution, quantum precision measurement, and quantum computing. In pursuit of more promising applications, efforts have been made to generate entangled states with more qubits. However, the efficient creation of a high-fidelity multiparticle entanglement remains an outstanding challenge due to the difficulty that increases exponentially with the number of particles. We design an interferometer that is capable of coupling the polarization and spatial paths of photons and prepare 2-D four-qubit GHZ entanglement states. Using quantum state tomography, entanglement witness, and the violation of Ardehali inequality against local realism, the properties of the prepared 2-D four-qubit entangled state are analyzed. The experimental results show that the prepared four-photon system is an entangled state with high fidelity.  相似文献   

9.
Characterization of the multipartite mixed state entanglement is still a challenging problem. This is due to the fact that the entanglement for the mixed states, in general, is defined by a convex-roof extension. That is the entanglement measure of a mixed state ρ of a quantum system can be defined as the minimum average entanglement of an ensemble of pure states. In this paper, we show that polynomial entanglement measures of degree 2 of even-N qubits X states is in the full agreement with the genuine multipartite (GM) concurrence. Then, we plot the hierarchy of entanglement classification for four qubit pure states and then using new invariants, we classify the four qubit pure states. We focus on the convex combination of the classes whose at most the one of the invariants is non-zero and find the relationship between entanglement measures consist of non-zero-invariant, GM concurrence and one-tangle. We show that in many entanglement classes of four qubit states, GM concurrence is equal to the square root of one-tangle.  相似文献   

10.
We propose an entanglement measure for pure M ? N bipartite quantum states. We obtain the measure by generalizing the equivalent measure for a 2 ? 2 system, via a 2 ? 3 system, to the general bipartite case. The measure emphasizes the role Bell states have, both for forming the measure and for experimentally measuring the entanglement. The form of the measure is similar to the generalized concurrence. In the case of 2 ? 3 systems, we prove that our measure, which is directly measurable, equals the concurrence. It is also shown that, in order to measure the entanglement, it is sufficient to measure the projections of the state onto a maximum of M(M ? 1)N(N ? 1)/2 Bell states.  相似文献   

11.
A bipartite multiphoton entangled state is created through stimulated parametric down-conversion of strong laser pulses in a nonlinear crystal. It is shown how detectors that do not resolve the photon number can be used to analyze such multiphoton states. Entanglement of up to 12 photons is detected using both the positivity of the partially-transposed density matrix and a newly derived criteria. Furthermore, evidence is provided for entanglement of up to 100 photons. The multiparticle quantum state is such that even in the case of an overall photon collection and detection efficiency as low as a few percent, entanglement remains and can be detected.  相似文献   

12.
Multiparticle Generalization of Remote State Preparation   总被引:1,自引:0,他引:1  
We present a scheme for preparing remotely a three-particle pure entangled state via entanglement swapping,and then we directly generalize it to the multiparticle case. It is shown that by using N pairs of bipartite EPR states as the quantum channel, remote preparation of some specially chosen N-particle pure entangled states can be achieved faithfully with an N-particle orthonormal basis measurement and only N bits of classical information.  相似文献   

13.
14.
We present a scheme for preparing remotely a three-particle pure entangled state via entanglement swapping,and then we directly generalize it to the multiparticle case. It is shown that by using N pairs of bipartite EPR states as the quantum channel, remote preparation of some specially chosen N-particle pure entangled states can be achieved faithfully with an N-particle orthonormal basis measurement and only N bits of classical information.  相似文献   

15.
Thermodynamic equilibrium of a system is considered as a consequence of quantum entanglement of the vacuum state of the system. An explicit mathematical model of multiparticle entangled pure quantum states is developed and analyzed. Within the framework of this model, the measurement process gives rise to probability distributions that exactly correspond to thermal equilibrium of the system in a thermostat.  相似文献   

16.
17.
In this paper we present an optical analogy of quantum entanglement by means of classical images. As in previous works, the quantum state of two or more qbits is encoded by using the spatial modulation in amplitude and phase of an electromagnetic field. We show here that bidimensional encoding of two qbit states allows us to interpret some non local features of the joint measurement by the assumption of “astigmatic” observers with different resolving power in two orthogonal directions. As an application, we discuss the optical simulation of measuring a system characterized by multiparticle entanglement. The simulation is based on a local representation of entanglement and a classical interferometric system. In particular we show how to simulate the Greenberger-Horne Zeilinger (GHZ) argument and the experimental results which interpretation illustrates the conflict between quantum mechanics and local realism.  相似文献   

18.
Given many independent and identically-distributed (i.i.d.) copies of a quantum system described either by the state ρ or σ (called null and alternative hypotheses, respectively), what is the optimal measurement to learn the identity of the true state? In asymmetric hypothesis testing one is interested in minimizing the probability of mistakenly identifying ρ instead of σ, while requiring that the probability that σ is identified in the place of ρ is bounded by a small fixed number. Quantum Stein’s Lemma identifies the asymptotic exponential rate at which the specified error probability tends to zero as the quantum relative entropy of ρ and σ. We present a generalization of quantum Stein’s Lemma to the situation in which the alternative hypothesis is formed by a family of states, which can moreover be non-i.i.d. We consider sets of states which satisfy a few natural properties, the most important being the closedness under permutations of the copies. We then determine the error rate function in a very similar fashion to quantum Stein’s Lemma, in terms of the quantum relative entropy. Our result has two applications to entanglement theory. First it gives an operational meaning to an entanglement measure known as regularized relative entropy of entanglement. Second, it shows that this measure is faithful, being strictly positive on every entangled state. This implies, in particular, that whenever a multipartite state can be asymptotically converted into another entangled state by local operations and classical communication, the rate of conversion must be non-zero. Therefore, the operational definition of multipartite entanglement is equivalent to its mathematical definition.  相似文献   

19.
Entanglement of any pure state of an N×N bi-partite quantum system may be characterized by the vector of coefficients arising by its Schmidt decomposition. We analyze various measures of entanglement derived from the generalized entropies of the vector of Schmidt coefficients. For N≥3 they generate different ordering in the set of pure states and for some states their ordering depends on the measure of entanglement used. This odd-looking property is acceptable, since these incomparable states cannot be transformed to each other with unit efficiency by any local operation. In analogy to special relativity the set of pure states equivalent under local unitaries has a causal structure so that at each point the set splits into three parts: the “Future,” the “Past,” and the set of noncomparable states.  相似文献   

20.
We investigate the decay of entanglement of generalized N-particle Greenberger-Horne-Zeilinger (GHZ) states interacting with independent reservoirs. Scaling laws for the decay of entanglement and for its finite-time extinction (sudden death) are derived for different types of reservoirs. The latter is found to increase with N. However, entanglement becomes arbitrarily small, and therefore useless as a resource, much before it completely disappears, around a time which is inversely proportional to the number of particles. We also show that the decay of multiparticle GHZ states can generate bound entangled states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号