首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase state of polysulfone/polyimide (PSF/PI) blends has been studied by differential scanning calorimetry, rheology, and X-ray scattering. The blends rich in PSF form miscible blends when prepared by solution casting from a common solvent. In these PSF-rich blends, the single dynamic process in rheology shifts and broadens, with composition reflecting the change in local friction and the enhancement of concentration fluctuations, respectively. Heating to temperatures above the glass transition temperature results in phase separation into PSF- and PI-rich domains. An apparent phase diagram has been constructed, and helium permeability has been measured in different regimes corresponding to miscible, partially miscible, and completely phase-separated states. We find that one component (PI) controls the permeability values and activation energies for helium permeation in the blends. Gas permeation is found to be very sensitive to local concentration fluctuations and thus can be used as a probe of the phase state in polymer blends. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2788–2798, 1999  相似文献   

2.
A 141100-atom model of a glassy ODPA–ODA polyimide free-standing membrane, corresponding to a thickness of two average radii of gyration for the 40-mers chains, has been studied using molecular dynamics (MD) simulations. Due to the large-scale of the fully atomistic model, a parallelized particle-mesh technique using an iterative solution of the Poisson equation had to be implemented for the efficient evaluation of the electrostatic interactions. With flattened-chain configurations, the density was found to adjust itself naturally in the middle of the membrane to 95% of the ODPA–ODA experimental value. At the free-standing surfaces, the density profile became sigmoïdal, indicating surface roughness. For comparison, two isotropic bulk models, one at the “normal” density as obtained for ODPA–ODA under ambient conditions and the other one at 95% of the normal-density, were built. Small gas probes were inserted into all three models in order to investigate whether the interfacial structure of the glassy free-standing membrane can influence penetrant transport. Gas diffusion in the low-density part of the interface was found to be very fast. The limiting value for the gas diffusion coefficient Dmembrane is only attained when the probes enter more dense regions in the membrane. Indeed, Dmembrane compares well with Dbulk obtained for the 95%-density bulk system, i.e. about twice that in the normal-density bulk. Solubility is larger in the membrane than in both bulk models, thus suggesting an effect of chain flattening in addition to the density. Adsorption is particularly high at the free-standing interfaces.  相似文献   

3.
This paper describes the preparation, characterization and permeation properties of polyimide BTDA-AAPTMI (Matrimid 5218) and co-polyimide BTDA-TDI/MDI (P84) dense polymer films containing aliphatic hyperbranched polyesters, Boltorn (H40). The H40 are dispersed in the polymers at various concentrations.

For Matrimid–H40 1.0 wt% membrane the nitrogen permeability increases but with significant loss in selectivity, while at higher H40 concentrations (5.0 and 10.0 wt%) the permeability becomes lower than of the pure polymer and the selectivity generally stays constant. The dispersion of various concentrations of H40 (1.0, 5.0 and 10.0 wt%) in P84 membranes decreases gas permeability in comparison to pure P84, while the selectivity generally stays constant.  相似文献   


4.
New data are reported for the permeation of inert gases through polyethylene, polytetrafluoroethylene, and silicone and natural rubbers. Additional data are compiled from the literature. The relative solubilities of these gases are practically insensitive to chemical variations in the homopolymer. Hence variations in structure at the glass transition (Tg) and melting (Tm) temperatures that affect diffusion also unambiguously affect permcation. Consequently an equivalence results between permeation at a given temperature for different polymers and permeation at different temperatures for a given polymer. Although the diffusion coefficient changes continuously with temperature, the Arrhenius parameters Do and Ed apparently change discontinuously at Tg and Tm. Their magnitudes and variations with atomic weight reach maxima at about Tg. These data indicate a dependence of the classical correlation between Do and Ed on polymer properties. A perturbed diameter for the permeant, specific for each polymer, is proposed for correlating the Do and Ed data. This correlation makes the changes observed at Tg and Tm more perceptible.  相似文献   

5.
We have developed an extremely simple room temperature chemical cross-linking technology for the modification of polyimide films for gas separations of He/N2 and O2/N2. Using 6FDA-durene as an example, chemical modification is performed by immersing the dense 6FDA-durene films in a p-xylenediamine methanol solution for a certain period of time followed by washing with fresh methanol and drying at ambient temperature. The chemical structure changes during the cross-linking process were monitored by FTIR, which indicated that imide groups were turned to amide groups during the modification process. TGA analyses showed cross-linked polyimides were thermally stable for gas separation applications. Gas permeation properties of modified polyimides to He, O2, N2 and CO2 were measured at 35°C and 10 atm. It is found that the gas permeability decreased significantly in the order of CO2>N2>O2>He with an increase in the degree of cross-linking, which were mainly attributed to the significant decreases in diffusion coefficients. The permselectivities of He/N2 and O2/N2 increased from 10 to 86 and from 4.1 to 5.9, respectively, but CO2/N2 decreased from 12 to 5.4, which suggest this cross-linking approach is most useful for the application of He/N2 and O2/N2 separations.  相似文献   

6.
Since many years synthetic membranes have been used in reverse osmosis or ultrafiltration for the separation of aqueous mixtures. More recently the separation of gases and vapors by selective membrane permeation has gained significant technical and commercial interest. The recovery of hydrogen from petrochemical purge gases and ammonia production processes or the removal of CO2 from natural gas by selective membrane permeation are today state of the art procedures. The recovery of organic solvents from waste air streams is another very promising application of synthetic membranes. In this paper the main parameters determining the performance of a membrane in gas and vapor separation are described. The requested intrinsic properties of the polymer to be useful as a barrier for a selective gas and vapor transport are discussed. The preparation of appropriate membranes is described. Their performance in practicle applications is illustrated in selected examples.  相似文献   

7.
Pure gas permeation and sorption experiments were carried out for the gases ethylene, ethane, propylene and propane using polyimides based on 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). Composite membranes and free films were used. Experiments were performed at 308 K and feed pressures up to 17 atm for ethylene and ethane and 9 atm for propylene and propane. Mixed gas permeation experiments were carried out with 50 : 50 olefin/paraffin feed mixtures. For all investigated polyimides, the ideal ethylene/ethane separation factor ranged between 3.3 and 4.4 and the ideal propylene/propane separation factor ranged between 10 and 16 at a feed pressure of 3.8 atm and 308 K. In mixed gas permeation experiments, up to 20% lower selectivity was found for the ethylene/ethane separation and up to 50% reduced selectivity for the propylene/propane separation compared to the ideal selectivity. The influence of feed temperature on separation and permeation properties will be discussed based on pure gas permeability data at 298 and 308 K.  相似文献   

8.
Asymmetric carbon hollow fiber membranes were prepared by pyrolysis of an asymmetric polyimide hollow fiber membrane, and their mechanical and permeation properties were investigated. The carbon membrane had higher elastic modulus and lower breaking elongation than the polyimide membrane. Permeation experiments were performed for single gases such as H2, CO2, and CH4, and for mixed gases such as H2/CH4 at high feed pressure ranging from 1 to 5 MPa with or without toluene vapor. The permeation properties of the carbon membranes and the polyimide membrane were compared. There was little change in the properties of the carbon membranes with a passage of time. The properties were hardly affected by the feed pressure, whether the feed was accompanied with the toluene vapor or not, because the carbon membranes were not affected by compaction and plasticization.  相似文献   

9.
Experimental and theoretical results of studying gas permeation through porous membranes are presented. In order to mimic an asymmetric membrane two porous ceramic disks with different pore radii were arranged in series. Besides the possibility to perform conventional permeation measurements, the applied experimental setup permits the determination of the pressure at the interface between the two discs. To predict the performance of the asymmetric structure, in preliminary experiments structure parameters were determined for both membranes separately. For the same total pressure difference across the two-disk arrangement, different interlayer pressures and fluxes were predicted and detected experimentally depending on the flow direction.  相似文献   

10.
11.
A series of polyurethane films based on hard segments consisting of toluene diisocyanate and 1,4-butanediol and different soft segments consisting of hydroxyl terminated polybutadiene, hydroxyl terminated polybutadiene/styrene and hydroxyl terminated polybutadiene/acrylonitrile were synthesized by solution polymerization separately. Positron annihilation lifetimes were measured at room temperature for all samples studied. We found that both the free volume size and fractional free-volume decreased with the increase of hard segment content. On the other hand, direct relationship between the gas permeability and the free-volume has been established based on the free-volume parameters and gas diffusivity measured. Experimental results revealed that the free-volume plays an important role in determining the gas permeability.  相似文献   

12.
Highly permeable glassy polymeric membranes based on poly (1‐trimethylsilyl‐1‐propyne) (PTMSP) and a polymer of intrinsic porosity (PIM‐1) were investigated for water sorption, water permeability and the separation of CO2 from N2 under humid mixed gas conditions. The water sorption isotherms for both materials followed behavior indicative of multilayer adsorption within the microvoids, with PIM‐1 registering a significant water uptake at very high water activities. Analysis of the sorption isotherms using a modified dual sorption model which accounts for such multilayer effects gave Langmuir affinity constants more consistent with lighter gases than the use of the standard dual mode approach. The water permeability through PTMSP and PIM‐1 was comparable over the water activities studied, and could be successfully model ed through a dual mode sorption model with a concentration dependent diffusivity. The water permeability through both membranes as a function of temperature was also measured, and found to be at a minimum at 80 ° C for PTMSP and 70 °C for PIM‐1. This temperature dependence is a function of reducing water solubility in both membranes with increasing temperature countered by increasing water diffusivity. The CO2 ‐ N2 mixed gas permeabilities through PTMSP and PIM‐1 were also measured and model ed through dual mode sorption theory. Introducing water vapour further reduced both the CO2 and N2 permeabilities. The plasticization potential of water in PTMSP was determined and indicated water swelled the membrane increasing CO2 and N2 diffusivity, while for PIM‐1 a negative potential implied that water filling of the microvoids hampered CO2 and N2 diffusion through the membrane. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 719–728  相似文献   

13.
Cellulose acetate (CA) membranes blended with Polyethylene glycol (PEG) in acetone–water solvent system were synthesized by using solution-casting method that resulted in the formation of flexible, white membranes. Different molecular weight (MW) grades of PEG (including MW 1000, 10,000 and 20,000?g/mol) were used. Cast membranes were tested for tensile strength and permeability at different loading of PEG MW 10,000 and 20,000?g/mol. Excellent flexible membranes were produced in acetone–water solvent system in the presence of PEG, which were otherwise brittle. Surface structure and morphology were analysed using scanning electron microscopy. The presence of different functional groups was confirmed using Fourier transform infra-red spectroscopy and the mechanical characteristics were studied by tensile testing. The introduction of PEG caused an increase in permeability of the membranes. The increase in permeability is due to the opening up of pores as the membrane becomes more flexible, when the plasticizer is added. The permeability continues to increase with the addition of PEG. Moreover, the resulting membranes are not only more flexible, but also have largely improved tensile strength as compared to the CA membranes without PEG. This improved tensile strength can also be attributed to the improved flexibility of the membrane. A trade-off is reached between tensile strength and permeability as increasing amount of PEG improves tensile strength but the resulting membrane becomes too permeable to be used for gas separation. Moreover, using PEG of higher MW resulted in porous membranes, even at low amounts of PEG. Therefore, we concluded that CA membrane with less amount of low-MW PEG (i.e. 5% PEG of MW 1000?g/mol) must be used to optimize both permeability and tensile strength of the membrane.  相似文献   

14.
The dusty gas model (DGM) is used to describe transport of binary gas mixtures through porous membrane supports to quantify the resistance towards permeation. The model equations account for three different transport mechanisms for the permeating components: conventional viscous pore flow, Knudsen diffusion, and binary diffusion. Experimental data obtained with the uncoated membrane supports are used to determine the morphological parameters needed in the DGM equations. Flat sheet and hollow fiber membrane supports are characterized by the permeation of a TCE/nitrogen vapor. The DGM shows an excellent fit to experimental data when the asymmetric structure of the membrane supports is taken into account, but the morphological parameters cannot necessarily be related to precise physical structure parameters such as pore size, porosity, and tortuosity. The DGM works well even when the membrane supports are modeled as a single homogenous structure. The membrane supports exhibit different resistances towards the various transport mechanisms that occur within the porous support and the resistances vary with process conditions so that support optimization is not straightforward. With the analysis presented in this paper and transport equations specific to the dense coating and module geometries, the influence of the support layer on gas or vapor separation can be quantified.  相似文献   

15.
The quantitative incorporation and high dispersion of platinum nanoparticles into MCM-41 has been carried out by the coordination between Pt(IV) ion and APTMS-anchored MCM-41. Before and after calcination of Pt/APTMS/MCM41 samples, the Pt content in samples was evaluated from home-made photoacoustic spectrometer (PAS). The PAS bands at 350 nm and 450 nm can be assigned to dd transition bands of Pt complexes. By increasing the concentration of Pt solution, the PAS intensity of Pt/APTMS/MCM41 was increased proportionally up to 1.0×10−2 M, and remained constant above 1.0×10−2 M. It can be attributed to the saturation of Pt content within Pt/APTMS/MCM41. The Pt content in the saturated Pt/APTMS/MCM41 was 8.5 wt% (the theoretical value), 9.7 wt% (measured by EDX) and 9.2 wt% (measured by ESCA), respectively. This indicates that the content of Pt precursor within MCM-41 could be controlled by the concentration of Pt precursor solution. The PAS intensity of calcined Pt/APTMS/MCM41's in H2 flow was increased up to 1.0×10−2 M and remained nearly constant above 1.0×10−2 M. Therefore, we suggest that the formation of Pt complexes with APTMS-anchored MCM-41 made it possible to incorporate quantitatively Pt nanoparticles in the range of 0.5–9.2 wt% within MCM-41 channels.  相似文献   

16.
A vapor permeation experiment for water–ethanol mixtures was carried out using asymmetric Ube polyimide hollow-fiber membranes, which exhibit high selective permeability for water vapor, under the conditions of T=413 K, upstream gas pressure Ph=1.5×105∼2.95×105 Pa and downstream gas pressure Pl=400 Pa. To represent gas separation properties of the Ube polyimide membrane with a high transition temperature (570 K), the contribution of Henry's law part and Langmuir part modes on the diffusion through the membrane is studied on the basis of the dual-mode transport models. The results show that Henry's law penetrant controls the diffusion in the membrane. For the separation of water–ethanol mixtures by permeation through Ube polyimide membranes, the water trapped in microcavities can be assumed to be totally immobilized under the operating conditions applied here.  相似文献   

17.
The aim of this article is to show the importance of concentration polarization effects in the separation of gas–vapor mixtures using membranes. In the experimental part of this work, gas mixture measurements are conducted with a specially designed test cell. The experimental data are analyzed using a two-resistance model for the transport through the membrane, which is derived in the theoretical part of this work. The two resistances considered are the transport through the boundary layer on the feed side of the membrane and through the separation layer. For the transport through the separation layer an extended free volume model is derived. This model considers not only the feed side but also the influence of the permeate side on the separation properties of the membrane. The results of the measurements show the influence of concentration polarization effects and their dependencies on feed pressure, membrane thickness, and feed flow rate.  相似文献   

18.
Graphene oxide (GO) with different oxidation degrees were synthesized by harsh oxidation of graphite using the improved Hummers method. The GO/polyimide (PI) mixed matrix membrane was successfully fabricated by in situ polymerization of PI monomers (3,3′,4,4′‐biphenyltetracarboxylic dianhydride and 4,4′‐diaminodiphenyl ether) with GO. The structure of GO was characterized by Fourier transform infrared, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, and thermal gravimetric analysis–differential thermal analysis. The performance of different GO/PI mixed matrix membranes was evaluated by permeation experiments of CO2/N2 gas mixture (volume ratio, 1:9). Results showed that more polar functional groups were introduced to GO with the increase in oxidation degree of GO in the preparation process, producing fewer layers and more translucent structures. GO with higher oxidation degree has significant effect on its dispersion in the N,N‐dimethylacetamide solvent and polymer matrix materials. The permeability of GO/PI hybrid membranes for CO2 and N2 increased. The CO2/N2 permeation selectivity of membranes exhibited a trend of initial increase, followed by a decrease, with the increase in oxidation degree, when the same amount of GO was added. For GO with the same oxidation degree, the permeability and permeation selectivity of hybrid membrane initially increased, and then decreased with the addition content of GO. In the case of hybrid membrane containing 1 wt% monolayer GO, the maximum permeability and permeation selectivity of hybrid membranes for CO2 were 14.3 and 4.2 times more than that of PI membrane without GO, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A study has been conducted to clarify the relationship between polymer structure, annealing temperature, and the extent of plasticization by high‐pressure CO2 for two typical polyimide membranes; BTDA‐DAPI (poly(3,3′‐4,4′‐benzophenone tetracarboxylic–dianhydride diaminophenylindane) and 6FDA‐TMPDA (poly(2,2′‐bis(3,4′‐dicasrboxyphenyl) hexafluoropropane dianhydride–2,3,5,6‐tetramethyl‐1,4‐phenylenediamine). Both membrane materials are exposed to varying levels of thermal annealing at 200 and 250 °C. The effect of this heat treatment on free volume is examined using positron annihilation lifetime spectroscopy (PALS), whereas fluorescence spectroscopy is used to monitor changes in electronic structure. Results show that thermal annealing causes a reduction in both the size and number of free volume elements. A strong relationship is found between the fluorescence peak intensity for 6FDA‐TMPDA and both the membrane gas permeability and plasticization pressure. This correlation is most likely the result of the formation of charge transfer complexes, particularly at 250 °C. However, the formation of covalent crosslinks at these temperatures cannot be discounted. No fluorescence is observed for BTDI‐DAPI. Although thermal annealing has a significant effect on the extent of plasticization in both polymers, it is found that the rate of plasticization is unaffected by the annealing temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1879–1890, 2008  相似文献   

20.
Gas transport properties of novel hyperbranched polyimide/hydroxy polyimide blends and their silica hybrid membranes were investigated. Gas permeability coefficients of the blend membranes showed positive deviation from a semilogarithmic additive rule. The enhanced gas permeability were resulted from the increase in free volume elements caused by the intermolecular interaction between terminal amine groups of the hyperbranched polyimide and hydroxyl groups of the hydroxy polyimide backbone. Additionally, CO2/CH4 separation ability of the blend membranes was markedly promoted by hybridization with silica. The remarkable CO2/CH4 separation behavior was considered to be due to characteristic distribution and interconnectivity of free volume elements created by the incorporation of silica. For the hyperbranched polyimide/hydroxy polyimide blend system, polymer blending and hybridization techniques synergistically provided the excellent CO2/CH4 separation ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号