首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A molecular-dynamics (MD) simulation of structure-H hydrates was performed under constant pressure and temperature with 6120 TIP4P water molecules, 900 OPLS-UA methane molecules, and 180 large molecular guest substance (LMGS) molecules. The LMGS molecules were represented in the form of a one-site Lennard-Jones (LJ) model using the LJ parameters sigma and epsilon. In order to clarify the thermodynamic stability of structure-H hydrates, we calculated the free-energy difference, changing on the sigma and epsilon only of the LMGS molecules. In this simulation, stable crystals of structure-H hydrates and a minimum value of DeltaG were obtained at sigma approximately 6.2 A and large values of epsilon. All simulations were performed using the special-purpose computer hardware MDGRAPE-2.  相似文献   

2.
The temperature dependence of the unit cell parameters of two newly identified hexagonal structure clathrate hydrates of hexamethylethane (HME) and 2,2-dimethylbutane (DMB) have been measured by X-ray powder diffraction. The thermal expansion of the two distinct crystallographic axes was found to be inequivalent. However, the coefficients of cubic expansion are comparable to that in the cubic structure I and II hydrates. The larger thermal expansivity in the clathrate hydrates relative to ice is attributed to the weakening of the host lattice due to the internal pressure generated by the rattling motions of the encaged guests.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

3.
4.
Molecular dynamics simulations are used to study the stability of structure H (sH) methane clathrate hydrates in a 3 x 3 x 3 sH unit cell replica. Simulations are performed at experimental conditions of 300 K and 2 GPa for three methane intermolecular potentials. The five small cages of the sH unit cell are assigned methane guest occupancies of one and large cage guest occupancies of one to five are considered. Radial distribution functions, unit cell volumes, and configurational energies are studied as a function of large cage CH(4) occupancy. Free energy calculations are carried out to determine the stability of clathrates for large cage occupancies. Large cage occupancy of five is the most stable configuration for a Lennard-Jones united-atom potential and the Tse-Klein-McDonald potential parametrized for condensed methane phases and two for the most stable configuation for the Murad and Gubbins potential.  相似文献   

5.
Thermodynamic studies of clathrate hydrates, mainly of structures I and II, are considered in this review which is based on 147 references. There are two main subjects. The first is the host lattice energy and the guest-host interaction energy, both of these quantities being related to the enthalpy of dissociation and composition of the hydrates. The second subject concerns orientational ordering phenomena occurring in both host and guest, as reflected in the low temperature heat capacity. The classical theoretical treatment of clathrate formation has been reconsidered on the basis of recent experimental results. Particular emphasis has been given to orientational ordering since this topic is undoubtedly central to clarifying the nature of clathrate hydrates.Ausgehend von 147 Literaturangaben wurden in diesem Review thermodynamische Untersuchungen von Klathrathydraten hauptsächlich der Struktur I und II betrachtet. Es gibt zwei Hauptaugenmerke. Als erstes die Wirtsgitterenergie und die Gast-Wirt-Wechselwirkungsenergie, beide bezogen auf die Dissoziationsenthalpie und die Bildungsenthalpie der Hydrate. Das zweite Hauptaugenmerk betrifft Orientierungs-Konditionierungserscheinungen sowohl in Wirt als auch Gast, wie in den Wärmekapazitäten bei niedrigen Temperaturen widergespiegelt wird. Auf der Basis jüngster experimenteller Ergebnisse wurde die klassische theoretische Betrachtung über die Bildung von Klathraten überprüft. Der Orientierung-Konditionierung wurde besonderer Nachdruck verliehen, da dies zweifellos eine entscheidende Rolle bei der Klärung der Natur der Klathrathydrate spielt. 147 I II. . «» « — », . «» « », . . , .
Contribution No. 155 from the Chemical Thermodynamics Laboratory.  相似文献   

6.
7.
Equilibrium molecular dynamics (MD) simulations have been performed in both the NVT and NPT ensembles to study the structural and dynamical properties of fully occupied methane clathrate hydrates at 50, 125, and 200 K. Five atomistic potential models were used for water, ranging from fully flexible to rigid polarizable and nonpolarizable. A flexible and a rigid model were utilized for methane. The phonon densities of states were evaluated and the localized rattling modes for the methane molecules were found to couple to the acoustic phonons of the host lattice. The calculated methane density of states was found to be in reasonable agreement with available experimental data.  相似文献   

8.
We report a theoretical study to predict the phase-equilibrium properties of ozone-containing clathrate hydrates based on the statistical thermodynamics model developed by van der Waals and Platteeuw. The Patel–Teja–Valderrama equation of state is employed for an accurate estimation of the properties of gas phase ozone. We determined the three parameters of the Kihara intermolecular potential for ozone as a = 6.815 · 10−2 nm, σ = 2.9909 · 10−1 nm, and ε · kB−1 = 184.00 K. An infinite set of εσ parameters for ozone were determined, reproducing the experimental phase equilibrium pressure–temperature data of the (O3 + O2 + CO2) clathrate hydrate. A unique parameter pair was chosen based on the experimental ozone storage capacity data for the (O3 + O2 + CCl4) hydrate that we reported previously. The prediction with the developed model showed good agreement with the experimental phase equilibrium data within ±2% of the average deviation of the pressure. The Kihara parameters of ozone showed slightly better suitability for the structure-I hydrate than CO2, which was used as a help guest. Our model suggests the possibility of increasing the ozone storage capacity of clathrate hydrates (∼7% on a mass basis) from the previously reported experimental capacity (∼1%).  相似文献   

9.
In this work we show that homogeneous nucleation of methane hydrate can, under appropriate conditions, be a very rapid process, achieved within tens of nanoseconds. In agreement with recent experimental results on different systems, we find that the nucleation of a gas hydrate crystal appears as a two-step process. It starts with the formation of disordered solid-like structures, which will then spontaneously evolve to more recognizable crystalline forms. This previously elusive first-stage state is confirmed to be post-critical in the nucleation process, and is characterized as processing reasonable short-range structure but essentially no long-range order. Its energy, molecular diffusion and local structure reflect a solid-like character, although it does exhibit mobility over longer (tens of ns) timescales. We provide insights into the controversial issue of memory effects in methane hydrates. We show that areas locally richer in methane will nucleate much more readily, and no 'memory' of the crystal is required for fast re-crystallization. We anticipate that much richer polycrystallinity and novel methane hydrate phases could be possible.  相似文献   

10.
The free energy differences are calculated for various type-I and type-II clathrate hydrates based on molecular-dynamics simulations, thereby evaluating the thermodynamic stability of the hydrates depending on the chemical species of the guest substances. The simulation systems consist of 27 unit cells, that is, 1242 water molecules and 216 guest molecules for type-I hydrates, and 3672 water molecules and 648 guest molecules for type-II hydrates. The water molecules are described by TIP4P potential, while the guest molecules are described by one-site Lennard-Jones potential, U=4epsilon{(sigma/r)12-(sigma/r)6}, where U is the potential energy, r is the particle distance, sigma is the particle diameter, and epsilon is the energy well depth. The optimal values of sigma that yield the minimum free energy (the best thermodynamic stability) were determined to be 0.39 nm for the type-I hydrates and 0.37 nm for the type-II hydrates.  相似文献   

11.
We present previously unreported crystalline and polycrystalline structures for methane hydrates obtained at relatively low pressures. These structures, which contain unusual cages with 12 pentagonal faces and 3 hexagonal faces, were observed during the atomistic simulations of the crystal growth of sI and sII methane hydrates. These 51263 cages have a significant impact on the structure of the resulting crystal and could explain several experimental observations regarding in-situ transformations between sI and sII hydrates. We document a previously unidentified structure of methane hydrates which we designate structure sK. Additionally, we predict a polycrystalline structure consisting of this new hydrate and sI and suggest a mechanism for the formation of a polycrystalline structure consisting of sequences of sI and sII hydrates.  相似文献   

12.
Tetrahydrofuran (THF) is one of the most widely used analogues for gas hydrates as well as a commonly used additive for reducing the formation pressure of a given hydrate process. Hydrates are also currently being investigated as storage materials for hydrogen as well as materials for hydrogen separations. Here we present a thermodynamic model, based on the CSMGem framework, that accurately captures the phase behavior of various hydrates containing THF and hydrogen. The model uses previously regressed parameters for components other than THF and H2, and can reproduce hydrate formation conditions for a number of hydrates containing THF and/or hydrogen (simple THF, THF + CH4, THF + N2, THF + CO2, THF + H2, CH4 + H2, C2H6 + H2 and C3H8 + H2). The incorporation of THF and H2 within this model framework will serve as a valuable tool for hydrate scenarios involving either of these components.  相似文献   

13.
14.
15.
Molecular dynamics simulations were performed on methane clathrate hydrates at ambient conditions. Thermal expansion results over the temperature range 60-300 K show that the unit cell volume increases with temperature in agreement with experiment. Power spectra were obtained at 273 K from velocity autocorrelation functions for selected atoms, and normal modes were assigned. The spectra were further classified according to individual atom types, allowing the assignment of contributions from methane molecules located in small and large cages within the structure I unit cell. The symmetric C-H stretch of methane in the small cages occurs at a higher frequency than for methane located in the large cages, with a peak separation of 14 cm(-1). Additionally, we determined that the symmetric C-H stretch in methane gas occurs at the same frequency as methane in the large cages. Results of molecular dynamics simulations indicate the use of power spectra obtained from the velocity autocorrelation function is a reliable method to investigate the vibrational behavior of guest molecules in clathrate hydrates.  相似文献   

16.
Interest in describing clathrate hydrate formation mechanisms spans multiple fields of science and technical applications. Here, we report findings from multiple molecular dynamics simulations of spontaneous methane clathrate hydrate nucleation and growth from fully demixed and disordered two-phase fluid systems of methane and water. Across a range of thermodynamic conditions and simulation geometries and sizes, a set of seven cage types comprises approximately 95% of all cages formed in the nucleated solids. This set includes the ubiquitous 5(12) cage, the 5(12)6(n) subset (where n ranges from 2-4), and the 4(1)5(10)6(n) subset (where n also ranges from 2-4). Transformations among these cages occur via water pair insertions/removals and rotations, and may elucidate the mechanisms of solid-solid structural rearrangements observed experimentally. Some consistency is observed in the relative abundance of cages among all nucleation trajectories. 5(12) cages are always among the two most abundant cage types in the nucleated solids and are usually the most abundant cage type. In all simulations, the 5(12)6(n) cages outnumber their 4(1)5(10)6(n) counterparts with the same number of water molecules. Within these consistent features, some stochasticity is observed in certain cage ratios and in the long-range ordering of the nucleated solids. Even when comparing simulations performed at the same conditions, some trajectories yield swaths of multiple adjacent sI unit cells and long-range order over 5 nm, while others yield only isolated sI unit cells and little long-range order. The nucleated solids containing long-range order have higher 5(12)6(2)/5(12) and 5(12)6(3)/4(1)5(10)6(2) cage ratios when compared to systems that nucleate with little long-range order. The formation of multiple adjacent unit cells of sI hydrate at high driving forces suggests an alternative or addition to the prevailing hydrate nucleation hypotheses which involve formation through amorphous intermediates.  相似文献   

17.
Classical molecular dynamics simulations are used to compare the stability of methane, carbon dioxide, nitrogen, and mixed CO(2)N(2) structure I (sI) clathrates under deep ocean seafloor temperature and pressure conditions (275 K and 30 MPa) which were considered suitable for CO(2) sequestration. Substitution of methane guests in both the small and large sI cages by CO(2) and N(2) fluids are considered separately to determine the separate contributions to the overall free energy of substitution. The structure I clathrate with methane in small cages and carbon dioxide in large cages is determined to be the most stable. Substitutions of methane in the small cages with CO(2) and N(2) have positive free energies. Substitution of methane with CO(2) in the large cages has a large negative free energy and substitution of the methane in the large cages with N(2) has a small positive free energy. The calculations show that under conditions where storage is being considered, carbon dioxide spontaneously replaces methane from sI clathrates, causing the release of methane. This process must be considered if there are methane clathrates present where CO(2) sequestration is to be attempted. The calculations also indicate that N(2) does not directly compete with CO(2) during methane substitution or clathrate formation and therefore can be used as a carrier gas or may be present as an impurity. Simulations further reveal that the replacement of methane with CO(2) in structure II (sII) cages also has a negative free energy. In cases where sII CO(2) clathrates are formed, only single occupancy of the large cages will be observed.  相似文献   

18.
The cage occupancy of hydrogen clathrate hydrate has been examined by grand canonical Monte Carlo (GCMC) simulations for wide ranges of temperature and pressure. The simulations are carried out with a fixed number of water molecules and a fixed chemical potential of the guest species so that hydrogen molecules can be created or annihilated in the clathrate. Two types of the GCMC simulations are performed; in one the volume of the clathrate is fixed and in the other it is allowed to adjust itself under a preset pressure so as to take account of compression by a hydrostatic pressure and expansion due to multiple cage occupancy. It is found that the smaller cage in structure II is practically incapable of accommodating more than a single guest molecule even at pressures as high as 500 MPa, which agrees with the recent experimental investigations. The larger cage is found to encapsulate at most 4 hydrogen molecules, but its occupancy is dependent significantly on the pressure of hydrogen.  相似文献   

19.
Equilibrium conditions for clathrate hydrates formed from methane and different concentrations of 1-propanol or 2-propanol aqueous solutions were experimentally determined at temperatures of 274.0–287.1 K and pressures up to 11.0 MPa. Each propanol has an inhibiting and/or promoting effect on hydrate formation depending on the propanol concentration. A structural transition from a structure I to a different hydrate structure occurred at concentrations between 3 and 5 mass% for 1-propanol and between 2 and 3 mass% for 2-propanol.  相似文献   

20.
The sI methane clathrate hydrate consists of methane gas molecules encapsulated as dodecahedron (5(12)CH(4)) and tetrakaidecahedron (5(12)6(2)CH(4)) water cages. The characterization of the stability of these cages is crucial to an understanding of the mechanism of their formation. In the present work, we perform calculations using density functional theory to calculate interaction energies, free energies, and reactivity indices of these cages. The contributions from polarization functions to interaction energies is more than diffuse functions from Pople basis sets, though both functions from the correlation-consistent basis sets contribute significantly to interaction energies. The interaction energies and free energies show that the formation of the 5(12)CH(4) cage (from the 5(12) cage) is more favored compared to the 5(12)6(2)CH(4) cage (from the 5(12)6(2) cage). The pressure-dependent study shows a spontaneous formation of the 5(12)CH(4) cage at 273 K (P ≥ 77 bar) and the 5(12)6(2)CH(4) cage (P = 100 bar). The reactivity of the 5(12)CH(4) cage is similar to that of the 5(12) cage, but the 5(12)6(2)CH(4) cage is more reactive than the 5(12)6(2) cage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号