首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivariate cubic polynomial optimization problems, as a special case of the general polynomial optimization, have a lot of practical applications in real world. In this paper, some necessary local optimality conditions and some necessary global optimality conditions for cubic polynomial optimization problems with mixed variables are established. Then some local optimization methods, including weakly local optimization methods for general problems with mixed variables and strongly local optimization methods for cubic polynomial optimization problems with mixed variables, are proposed by exploiting these necessary local optimality conditions and necessary global optimality conditions. A global optimization method is proposed for cubic polynomial optimization problems by combining these local optimization methods together with some auxiliary functions. Some numerical examples are also given to illustrate that these approaches are very efficient.  相似文献   

2.
讨论了带线性不等式约束三次规划问题的最优性条件和最优化算法. 首先, 讨论了带有线性不等式约束三次规划问题的 全局最优性必要条件. 然后, 利用全局最优性必要条件, 设计了解线性约束三次规划问题的一个新的局部最优化算法(强局部最优化算法). 再利用辅助函数和所给出的新的局部最优化算法, 设计了带有线性不等式约束三 规划问题的全局最优化算法. 最后, 数值算例说明给出的最优化算法是可行的、有效的.  相似文献   

3.
本文考虑了一类特殊的多项式整数规划问题。此类问题有很广泛的实际应用,并且是NP难问题。对于这类问题,最优性必要条件和最优性充分条件已经给出。我们在本文中将要利用这些最优性条件设计最优化算法。首 先,利用最优性必要条件,我们给出了一种新的局部优化算法。进而我们结合最优性充分条件、新的局部优化算法和辅助函数,设计了新的全局最优化算法。本文给出的算例展示出我们的算法是有效的和可靠的。  相似文献   

4.
In this paper, we first establish some sufficient and some necessary global optimality conditions for quadratic integer programming problems. Then we present a new local optimization method for quadratic integer programming problems according to its necessary global optimality conditions. A new global optimization method is proposed by combining its sufficient global optimality conditions, local optimization method and an auxiliary function. The numerical examples are also presented to show that the proposed optimization methods for quadratic integer programming problems are very efficient and stable.  相似文献   

5.
In this paper some global optimality conditions for general quadratic {0, 1} programming problems with linear equality constraints are discussed and then some global optimality conditions for quadratic assignment problems (QAP) are presented. A local optimization method for (QAP) is derived according to the necessary global optimality conditions. A global optimization method for (QAP) is presented by combining the sufficient global optimality conditions, the local optimization method and some auxiliary functions. Some numerical examples are given to illustrate the efficiency of the given optimization methods.  相似文献   

6.
In this paper, we present Lagrange multiplier necessary conditions for global optimality that apply to non-convex optimization problems beyond quadratic optimization problems subject to a single quadratic constraint. In particular, we show that our optimality conditions apply to problems where the objective function is the difference of quadratic and convex functions over a quadratic constraint, and to certain class of fractional programming problems. Our necessary conditions become necessary and sufficient conditions for global optimality for quadratic minimization subject to quadratic constraint. As an application, we also obtain global optimality conditions for a class of trust-region problems. Our approach makes use of outer-estimators, and the powerful S-lemma which has played key role in control theory and semidefinite optimization. We discuss numerical examples to illustrate the significance of our optimality conditions. The authors are grateful to the referees for their useful comments which have contributed to the final preparation of the paper.  相似文献   

7.
We establish new necessary and sufficient optimality conditions for global optimization problems. In particular, we establish tractable optimality conditions for the problems of minimizing a weakly convex or concave function subject to standard constraints, such as box constraints, binary constraints, and simplex constraints. We also derive some new necessary and sufficient optimality conditions for quadratic optimization. Our main theoretical tool for establishing these optimality conditions is abstract convexity.  相似文献   

8.
In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also obtain necessary global optimality conditions, which are different from the Lagrange multiplier conditions for special classes of quadratic optimization problems. These classes include weighted least squares with ellipsoidal constraints, and quadratic minimization with binary constraints. We discuss examples which demonstrate that our optimality conditions can effectively be used for identifying global minimizers of certain multi-extremal non-convex quadratic optimization problems. The work of Z. Y. Wu was carried out while the author was at the Department of Applied Mathematics, University of New South Wales, Sydney, Australia.  相似文献   

9.
First-order optimality conditions have been extensively studied for the development of algorithms for identifying locally optimal solutions. In this work, we propose two novel methods that directly exploit these conditions to expedite the solution of box-constrained global optimization problems. These methods carry out domain reduction by application of bounds tightening methods on optimality conditions. This scheme is implicit and avoids explicit generation of optimality conditions through symbolic differentation, which can be memory and time intensive. The proposed bounds tightening methods are implemented in the global solver BARON. Computational results on a test library of 327 problems demonstrate the value of our proposed approach in reducing the computational time and number of nodes required to solve these problems to global optimality.  相似文献   

10.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

11.
In this paper, we develop necessary conditions for global optimality that apply to non-linear programming problems with polynomial constraints which cover a broad range of optimization problems that arise in applications of continuous as well as discrete optimization. In particular, we show that our optimality conditions readily apply to problems where the objective function is the difference of polynomial and convex functions over polynomial constraints, and to classes of fractional programming problems. Our necessary conditions become also sufficient for global optimality for polynomial programming problems. Our approach makes use of polynomial over-estimators and, a polynomial version of a theorem of the alternative which is a variant of the Positivstellensatz in semi-algebraic geometry. We discuss numerical examples to illustrate the significance of our optimality conditions.  相似文献   

12.
We discuss global optimality conditions and cutting plane algorithms for DC optimization. The discussion is motivated by certain incorrect results that have appeared recently in the literature on these topics. Incidentally, we investigate the relation of the Tikhonov reciprocity theorem to the optimality conditions for general nonconvex global optimization problems and show how the outer-approximation scheme developed earlier for DC programming can be used to solve a wider class of problems.  相似文献   

13.
In this paper, we establish global optimality conditions for quadratic optimization problems with quadratic equality and bivalent constraints. We first present a necessary and sufficient condition for a global minimizer of quadratic optimization problems with quadratic equality and bivalent constraints. Then we examine situations where this optimality condition is equivalent to checking the positive semidefiniteness of a related matrix, and so, can be verified in polynomial time by using elementary eigenvalues decomposition techniques. As a consequence, we also present simple sufficient global optimality conditions, which can be verified by solving a linear matrix inequality problem, extending several known sufficient optimality conditions in the existing literature.  相似文献   

14.
This paper provides characterizations of the weakly minimal elements of vector optimization problems and the global minima of scalar optimization problems posed on locally convex spaces whose objective functions are deterministic while the uncertain constraints are treated under the robust (or risk-averse) approach, i.e. requiring the feasibility of the decisions to be taken for any possible scenario. To get these optimality conditions we provide Farkas-type results characterizing the inclusion of the robust feasible set into the solution set of some system involving the objective function and possibly uncertain parameters. In the particular case of scalar convex optimization problems, we characterize the optimality conditions in terms of the convexity and closedness of an associated set regarding a suitable point.  相似文献   

15.
Second-order necessary and sufficient conditions for local optimality in constrained optimization problems are discussed. For global optimality, a criterion recently developed by Hiriart-Urruty and Lemarechal is thoroughly examined in the case of concave quadratic problems and reformulated into copositivity conditions.  相似文献   

16.
In this paper, we present sufficient global optimality conditions for weakly convex minimization problems using abstract convex analysis theory. By introducing (L,X)-subdifferentials of weakly convex functions using a class of quadratic functions, we first obtain some sufficient conditions for global optimization problems with weakly convex objective functions and weakly convex inequality and equality constraints. Some sufficient optimality conditions for problems with additional box constraints and bivalent constraints are then derived.   相似文献   

17.
In this paper we present necessary conditions for global optimality for polynomial problems with box or bivalent constraints using separable polynomial relaxations. We achieve this by first deriving a numerically checkable characterization of global optimality for separable polynomial problems with box as well as bivalent constraints. Our necessary optimality conditions can be numerically checked by solving semi-definite programming problems. Then, by employing separable polynomial under-estimators, we establish sufficient conditions for global optimality for classes of polynomial optimization problems with box or bivalent constraints. We construct underestimators using the sum of squares convex (SOS-convex) polynomials of real algebraic geometry. An important feature of SOS-convexity that is generally not shared by the standard convexity is that whether a polynomial is SOS-convex or not can be checked by solving a semidefinite programming problem. We illustrate the versatility of our optimality conditions by simple numerical examples.  相似文献   

18.
Multiobjective optimization is a useful mathematical model in order to investigate real-world problems with conflicting objectives, arising from economics, engineering, and human decision making. In this paper, a convex composite multiobjective optimization problem, subject to a closed convex constraint set, is studied. New first-order optimality conditions for a weakly efficient solution of the convex composite multiobjective optimization problem are established via scalarization. These conditions are then extended to derive second-order optimality conditions.  相似文献   

19.
In this paper, we develop the sufficient conditions for the existence of local and global saddle points of two classes of augmented Lagrangian functions for nonconvex optimization problem with both equality and inequality constraints, which improve the corresponding results in available papers. The main feature of our sufficient condition for the existence of global saddle points is that we do not need the uniqueness of the optimal solution. Furthermore, we show that the existence of global saddle points is a necessary and sufficient condition for the exact penalty representation in the framework of augmented Lagrangians. Based on these, we convert a class of generalized semi-infinite programming problems into standard semi-infinite programming problems via augmented Lagrangians. Some new first-order optimality conditions are also discussed. This research was supported by the National Natural Science Foundation of P.R. China (Grant No. 10571106 and No. 10701047).  相似文献   

20.
For a class of global optimization (maximization) problems, with a separable non-concave objective function and a linear constraint a computationally efficient heuristic has been developed.The concave relaxation of a global optimization problem is introduced. An algorithm for solving this problem to optimality is presented. The optimal solution of the relaxation problem is shown to provide an upper bound for the optimal value of the objective function of the original global optimization problem. An easily checked sufficient optimality condition is formulated under which the optimal solution of concave relaxation problem is optimal for the corresponding non-concave problem. An heuristic algorithm for solving the considered global optimization problem is developed.The considered global optimization problem models a wide class of optimal distribution of a unidimensional resource over subsystems to provide maximum total output in a multicomponent systems.In the presented computational experiments the developed heuristic algorithm generated solutions, which either met optimality conditions or had objective function values with a negligible deviation from optimality (less than 1/10 of a percent over entire range of problems tested).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号