首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Witten's topological theory of the generation problem, gauge groups are identified with theE 8 centraliser of the holonomy group of the internal manifold. Here we show that this amounts to interpreting gauge groups as generalised symmetry groups of the (internal) Levi-Civitá connection. We then give techniques for computing centralisers in exceptional groups, taking into account the fact that holonomy groups are frequently disconnected. These techniques allow us to deal with compact locally irreducible Ricci-flat Riemannian manifolds of all holonomy types and dimensions.  相似文献   

2.
《Nuclear Physics B》1998,514(3):583-602
We consider euclidean D-branes wrapping around manifolds of exceptional holonomy in dimensions seven and eight. The resulting theory on the D-brane—that is, the dimensional reduction of 10-dimensional supersymmetric Yang-Mills theory—is a cohomological field theory which describes the topology of the moduli space of instantons. The 7-dimensional theory is an NT = 2 (or balanced) cohomological theory given by an action potential of Chern-Simons type. As a by-product of this method, we construct a related cohomological field theory which describes the monopole moduli space on a 7-manifold of G2 holonomy.  相似文献   

3.
We present a systematic calculation of the volumes of compact manifolds which appear in physics: spheres, projective spaces, group manifolds and generalized flag manifolds. In each case we state what we believe is the most natural scale or normalization of the manifold, that is, the generalization of the unit radius condition for spheres. For this aim we first describe the manifold with some parameters, set up a metric, which induces a volume element, and perform the integration for the adequate range of the parameters; in most cases our manifolds will be either spheres or (twisted) products of spheres, or quotients of spheres (homogeneous spaces).Our results should be useful in several physical instances, as instanton calculations, propagators in curved spaces, sigma models, geometric scattering in homogeneous manifolds, density matrices for entangled states, etc. Some flag manifolds have also appeared recently as exceptional holonomy manifolds; the volumes of compact Einstein manifolds appear in string theory.  相似文献   

4.
5.
《Physics letters. [Part B]》1987,199(3):380-388
A variety of heterotic string compactifications on the K3 surface, manifolds of SU(3) holomony, and higher holomony manifolds, are solved exactly. An example of the quintic hypersurface in CP4 is worked out in detail. It is conjectured, and demonstrated in part, that any supersymmetric compactification of the heterotic string with an N=2 superconformal theory is equivalent to a compactification on a manifold of SU(N) holonomy, and in particular an arbitrary gluing of the discrete models with c=9 gives a solvable heterotic string compactification on some Calabi-Yau manifold. Calabi-Yau compactifications are seen to be exact vacua of string theory, retaining their topological and geometrical characteristics. Previously unknown enhanced gauge symmetries are found to arise for certain backgrounds.  相似文献   

6.
《Nuclear Physics B》2001,600(1):133-162
We study topological gauge theories with Nc=(2,0) supersymmetry based on stable bundles on general Kähler 3-folds. In order to have a theory that is well defined and well behaved, we consider a model based on an extension of the usual holomorphic bundle by including a holomorphic 3-form. The correlation functions of the model describe complex 3-dimensional generalizations of Donaldson–Witten type invariants. We show that the path integral can be written as a sum of contributions from stable bundles and a complex 3-dimensional version of Seiberg–Witten monopoles. We study certain deformations of the theory, which allow us to consider the situation of reducible connections. We shortly discuss situations of reduced holonomy. After dimensional reduction to a Kähler 2-fold, the theory reduces to Vafa–Witten theory. On a Calabi–Yau 3-fold, the supersymmetry is enhanced to Nc=(2,2). This model may be used to describe classical limits of certain compactifications of (matrix) string theory.  相似文献   

7.
This is the content of a set of lectures given at the “XIII Jorge André Swieca Summer School on Particles and Fields”, Campos do Jordão, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non‐Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D–branes at singularities and wrapping D–branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non‐perturbative phenomena in non‐Abelian gauge theories as seen from supergravity.  相似文献   

8.
We study the structure of noncollapsed Gromov-Hausdorff limits of sequences, Mni, of riemannian manifolds with special holonomy. We show that these spaces are smooth manifolds with special holonomy off a closed subset of codimension 4. Additional results on the the detailed structure of the singular set support our main conjecture that if the Mni are compact and a certain characteristic number, C(Mni), is bounded independent of i, then the singularities are of orbifold type off a subset of real codimension at least 6.The first author was partially supported by NSF Grant DMS 0104128 and the second by NSF Grant DMS 0302744.  相似文献   

9.
We study a class of supersymmetric spinning particle models derived from the radial quantization of stationary, spherically symmetric black holes of four dimensional \({{\mathcal N} = 2}\) supergravities. By virtue of the c-map, these spinning particles move in quaternionic Kähler manifolds. Their spinning degrees of freedom describe mini-superspace-reduced supergravity fermions. We quantize these models using BRST detour complex technology. The construction of a nilpotent BRST charge is achieved by using local (worldline) supersymmetry ghosts to generate special holonomy transformations. (An interesting byproduct of the construction is a novel Dirac operator on the superghost extended Hilbert space.) The resulting quantized models are gauge invariant field theories with fields equaling sections of special quaternionic vector bundles. They underly and generalize the quaternionic version of Dolbeault cohomology discovered by Baston. In fact, Baston’s complex is related to the BPS sector of the models we write down. Our results rely on a calculus of operators on quaternionic Kähler manifolds that follows from BRST machinery, and although directly motivated by black hole physics, can be broadly applied to any model relying on quaternionic geometry.  相似文献   

10.
《Nuclear Physics B》1998,521(3):419-443
In four-dimensional gauge theory there exists a well-known correspondence between instantons and holomorphic curves, and a similar correspondence exists between certain octonionic instantons and triholomorphic curves. We prove that this latter correspondence stems from the dynamics of various dimensional reductions of ten-dimensional supersymmetric Yang-Mills theory. More precisely we show that the dimensional reduction of the (5+1)-dimensional supersymmetric sigma model with hyper-Kähler (but otherwise arbitrary) target X to a four-dimensional hyper-Kähler manifold M is a topological sigma model localising on the space of triholomorphic maps M -+ X (or hyperinstantons). When X is the moduli space Mk of instantons on a four-dimensional hyper-Kdhler manifold K, this theory has an interpretation in terms of supersymmetric gauge theory. In this case, the topological sigma model can be understood as an adiabatic limit of the dimensional reduction of ten-dimensional supersymmetric Yang-Mills on the eight-dimensional manifold M × K of holonomy Sp(1) × Sp(1) ⊂ Spin(7), which is a cohomological theory localising on the moduli space of octonionic instantons.  相似文献   

11.
《Nuclear Physics B》1996,475(3):579-596
We present an ansatz which enables us to construct heterotic/M-theory dual pairs in four dimensions. It is checked that this ansatz reproduces previous results and that the massless spectra of the proposed new dual pairs agree. The new dual pairs consist of M-theory compactifications on Joyce manifolds of G2 holonomy and Calabi-Yau compactifications of heterotic strings. These results are further evidence that M-theory is consistent on orbifolds. Finally, we interpret these results in terms of M-theory geometries which are K3 fibrations and heterotic geometries which are conjectured to be T3 fibrations. Even though the new dual pairs are constructed as non-freely acting orbifolds of existing dual pairs, the adiabatic argument is apparently not violated.  相似文献   

12.
We introduce a technique for restoring general coordinate invariance into theories where it is explicitly broken. This is the analog for gravity of the Callan-Coleman-Wess-Zumino formalism for gauge theories. We use this to elucidate the properties of interacting massless and massive gravitons. For a single graviton with a Planck scale MPl and a mass mg, we find that there is a sensible effective field theory which is valid up to a high-energy cutoff Λ parametrically above mg. Our methods allow for a transparent understanding of the many peculiarities associated with massive gravitons, among them the need for the Fierz-Pauli form of the Lagrangian, the presence or absence of the van Dam-Veltman-Zakharov discontinuity in general backgrounds, and the onset of non-linear effects and the breakdown of the effective theory at large distances from heavy sources. The natural sizes of all non-linear corrections beyond the Fierz-Pauli term are easily determined. The cutoff scales as Λ∼(mg4MPl)1/5 for the Fierz-Pauli theory, but can be raised to Λ∼(mg2MPl)1/3 in certain non-linear extensions. Having established that these models make sense as effective theories, there are a number of new avenues for exploration, including model building with gravity in theory space and constructing gravitational dimensions.  相似文献   

13.
The loop space formulation of 3+1 canonical quantum gravity premises that all physical information is contained within the holonomy loop functionals. This assumption is the result of the reconstruction theorem for a principla fiber bundle on a base loop space. The gauge connection for interacting gauge theories is more appropriately and readily reconstructed on a path space as opposed to a loop space. We generalize the reconstruction theorem to a base path space. Employing a holonomy groupoid map and a path connection, we trivially construct an abstract Lie groupoid from which a principal fiber bundle and gauge connection can be derived as distinctive examples. The groupoid reconstruction theorem is valid on both connected and nonconnected base manifolds, unlike the holonomy group reconstruction theorem, which can only be utilized for connected manifolds.  相似文献   

14.
《Physics letters. [Part B]》1997,415(3):242-252
Euclidean supersymmetric theories are obtained from Minkowskian theories by performing a reduction in the time direction. This procedure elucidates certain mysterious features of Zumino's N = 2 model in four dimensions, provides manifestly hermitian Euclidean counterparts of all non-mimimal SYM theories, and is also applicable to supergravity theories. We reanalyse the twists of the 4d N = 2 and N = 4 models from this point of view. Other applications include SYM theories on special holonomy manifolds. In particular, we construct a twisted SYM theory on Kähler 3-folds and clarify the structure of SYM theory on hyper-Kähler 4-folds.  相似文献   

15.
We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z2-graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k + 2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured.  相似文献   

16.
In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the boundary and we develop its extension to strata of higher codimension in the case of manifolds with corners. We present several examples including electrodynamics, Yang-Mills theory and topological field theories coming from the AKSZ construction, in particular, the Chern-Simons theory, the BF theory, and the Poisson sigma model. This paper is the first step towards developing the perturbative quantization of such theories on manifolds with boundary in a way consistent with gluing.  相似文献   

17.
We derive formulas for counting certain classes of vacua in the string/M theory landscape. We do so in the context of the moduli space of M-theory compactifications on singular manifolds with G2G2 holonomy. Particularly, we count the numbers of gauge theories with different gauge groups but equal numbers of U(1)U(1) factors which are dual to each other. The vacua correspond to various symmetry breaking patterns of grand unified theories. Counting these dual vacua is equivalent to counting the number of conjugacy classes of elements of finite order inside Lie groups. We also point out certain cases where the conventional expectation is that symmetry breaking patterns by Wilson lines and Higgs fields are the same, but we show they are in fact different.  相似文献   

18.
19.
G2-Monopoles are solutions to gauge theoretical equations on G2-manifolds. If the G2-manifolds under consideration are compact, then any irreducible G2-monopole must have singularities. It is then important to understand which kind of singularities G2-monopoles can have. We give examples (in the noncompact case) of non-Abelian monopoles with Dirac type singularities, and examples of monopoles whose singularities are not of that type. We also give an existence result for Abelian monopoles with Dirac type singularities on compact manifolds. This should be one of the building blocks in a gluing construction aimed at constructing non-Abelian ones.  相似文献   

20.
We investigate how in supersymmetric gauge theories non-perturbative effects are able to generate non-trivial vacuum properties otherwise forbidden by perturbative non-renormalization theorems. This conclusion can be reliably drawn since the constancy of certain Green functions — due to supersymmetry (SUSY) — allows one to connect vacuum-dominated large distances with short-distance behaviour which is reliably computed by instanton methods. In all the cases we discuss (without matter, with massive or massless matter in real representations and, finally, with matter in complex representations) instanton calculations imply the occurrence of a variety of condensates. For the pure SUSY gauge theory, a gluino condensate induces the spontaneous breaking of Z2N. For massive super-quantum chromodynamics (SQCD) we find a peculiar mass dependence of matter condensates whose origin is traced to mass singularities of non-zero mode instanton contributions. These contributions force the massless limit of SQCD to differ from the strictly massless case, in which the spontaneous breaking of chiral symmetries is induced. Inconsistency with an anomaly equation forces either infinite matter condensates or spontaneous SUSY breaking in the massless cases. For non-constant Green functions, instantons are shown to provide new calculable short-distance singularities of an obvious non-perturbative nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号