首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution.  相似文献   

2.
3.
The possibilities of performing non-destructive elemental analysis in three dimensions on a variety of heterogeneous materials by means of an innovative variation of the microscopic X-ray fluorescence analysis (μ-XRF) method are described. Next to employing focusing optics for concentration of the primary beam of X-rays, a second optical element between the sample and the energy-dispersive detector is used in confocal μ-XRF. Thus, only X-ray fluorescence signals from a cube-like volume (within certain limits imposed by the absorption of the radiation in the sample) can be arbitrarily positioned within the sample. The distribution of major, minor and trace elements (down to the sub-ppm concentration level in some matrices) along lines and planes within the sample can be visualized with a spatial resolution of the order of 15–40 μm. The lowest detectable amounts in confocal mode using pink-beam excitation are situated at the sub-femtogram level.  相似文献   

4.
X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.  相似文献   

5.
The present study reports on results of analysis of the elemental composition of thin films by electron probe microanalysis with energy dispersive (ED-EPMA) X-ray spectrometry in conjunction with the dedicated thin-film analysis software package Stratagem and by X-ray fluorescence in its version with a micro-focus X-ray fluorescence (μ-XRF) source attached to a scanning electron microscope (SEM). Two thin-film systems have been analyzed: Fe1-xNix on silicon wafer and Si1-xGex on Al2O3 substrate, in both cases the layers being grown to a thickness of about 200 nm by ion beam sputter deposition. Samples of five different atomic fractions have been produced and analyzed for each thin-film system. Moreover, reference samples with certified elemental composition and thickness have been also available. This study is part of an interlaboratory comparison organized in the frame of standardization technical committee ISO/TC 201 “Surface chemical analysis.” Two laboratories have been analyzed by ED-EPMA (one laboratory standardless and one laboratory using both standardless and with standards variants) and one laboratory by μ-XRF (standardless and with standards). All the elemental compositions obtained with different methods are in very good agreement for the complete two sets of five samples each.  相似文献   

6.
Grazing-exit XRF (GE-XRF), where the X-ray fluorescence is measured at small take-off angles, is a method related to TXRF. It has been demonstrated that GE-XRF is useful for surface, thin-film and particle analyses. In GE-XRF, it is possible to use a μ-X-ray beam at a normal incidence. Thus, a laboratory GE-XRF instrument was developed in combination with a μ-XRF setup. A μ-X-ray beam was produced by the combination of a single capillary and a pinhole aperture. It was demonstrated that depth information could be obtained by using this setup and changing the exit angle. Therefore, this instrument enables measurement of surface-sensitive line scanning and elemental mapping under grazing-exit conditions. In principle, measuring the elemental X-ray mappings at different exit angles enables the reconstruction of three-dimensional elemental distributions. To confirm the feasibility of three-dimensional XRF, a type of Japanese lacquerware, ‘Tamamushi-nuri’, which has a layered structure near the surface, was measured.  相似文献   

7.
High-intensity monocapillary X-ray guide tube is studied and compared with a commercially available polycapillary tube. The newly designed monocapillary tube is capable of achieving spatial resolution of 10 μm in beam diameter. In comparison with the polycapillary tube, beam diameter of the present monocapillary tube is not enlarged and allows the sample to be measured at a working distance that is 10 times less. Thus, the monocapillary tube is the more versatile X-ray focusing optics as it provides improvements in spatial analysis of samples.  相似文献   

8.
The chemical composition of tissues can influence their form and function. As a prime example, the lattice-like arrangement of collagen fibrils required for corneal transparency is controlled, in part, by sulfated proteoglycans, which, via core proteins, bind to the collagen at specific locations along the fibril axis. However, to date, no studies have been able to directly identify and characterize sulfur (S) in the cornea as a function of tissue location. In this study, X-ray absorption near-edge structure spectroscopy and micro-beam X-ray fluorescence (μ-XRF) chemical contrast imaging were employed to probe the nature of the mature (bovine) cornea as a function of position from the anterior sub-epithelial region into the deep stroma. Data indicate an inhomogeneity in the composition of S species in the first ≈50 μm of stromal depth. In μ-XRF chemical contrast imaging, S did not co-localize with phosphorous (P) in the deep stroma where sulfates are prominent. Rather, P is present only as isolated micrometric spots, presumably identifiable as keratocytes. This study lends novel insights into the elemental physiology of mature cornea, especially in relation to its S distribution; future studies could be applied to human tissues. Moreover, it defines an analytical protocol for the interrogation of S species in biological tissues with micrometric resolution.
Figure
Sulfur species distribution in corneal tissue. Spatial distribution of S (red) and P (green) extracted from µ-XRF maps of a bovine cornea cut. The incoming X-ray beam energy was tuned in order to enhance the absorption from sulfate (upper map) and thiol/monosulfide (lower map) groups, respectively  相似文献   

9.
We investigated X-ray energy distribution in an X-ray microbeam produced by a polycapillary X-ray lens in combination with a sealed-type X-ray tube. This polycapillary X-ray lens has an output focal distance (OFD) of approximately 15 mm. The size of the X-ray microbeam and its OFD were estimated by using a wire scanning method. In our case, the sizes of the X-ray microbeams at the output focal distance were 49 microm for Mo L(alpha), 36 microm for W L(alpha), and 28 microm for Mo K(alpha). The spot sizes depend on the energy of the X-ray fluorescence. The reason for the energy dependence is that X-ray capillary optics is based on the principle of propagation through glass capillaries by means of X-ray total external reflection. The evaluated OFD values of Mo L(alpha) and Mo K(alpha) were slightly changed in 17 microm. However, a deviation of 100 microm from the OFD caused only a 3% increase of the focal spot size. Therefore, we concluded that the OFD showed no significant dependence on X-ray energy.  相似文献   

10.
Synchrotron-based X-ray absorption spectroscopy has been used to determine the chemical speciation of Np sorbed on Opalinus Clay (OPA, Mont Terri, Switzerland), a natural argillaceous rock revealing a micro-scale heterogeneity. Different sorption and diffusion samples with Np(V) were prepared for spatially resolved molecular-level investigations. Thin sections of OPA contacted with Np(V) solution under aerobic and anaerobic conditions as well as a diffusion sample were analysed spatially resolved. Micro-X-ray fluorescence (μ-XRF) mapping has been used to determine the elemental distributions of Np, Fe and Ca. Regions of high Np concentration were subsequently investigated by micro-X-ray absorption fine structure spectroscopy to determine the oxidation state of Np. Further, micro-X-ray diffraction (μ-XRD) was employed to gain knowledge about reactive crystalline mineral phases in the vicinity of Np enrichments. One thin section was also analysed by electron microprobe to determine the elemental distributions of the lighter elements (especially Si and Al), which represent the main elements of OPA. The results show that in most samples, Np spots with considerable amounts of Np(IV) could be found even when the experiments were carried out in air. In some cases, almost pure Np(IV) L(III)-edge X-ray absorption near-edge structure spectra were recorded. In the case of the anaerobic sample, the μ-XRF mapping showed a clear correlation between Np and Fe, indicating that the reduction of Np(V) is caused by an iron(II)-containing mineral which could be identified by μ-XRD as pyrite. These spatially resolved investigations were complemented by extended X-ray absorption fine structure measurements of powder samples from batch experiments under aerobic and anaerobic conditions to determine the structural parameters of the near-neighbour environment of sorbed Np.  相似文献   

11.
A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.  相似文献   

12.
A new TXRF instrument combined with micro‐XRF analytical technique was proposed. An X‐ray micro‐beam was obtained by using a polycapillary X‐ray lens. The evaluated diameter of the X‐ray beam at the focal distance was 35 μm. In order to satisfy the total reflection condition of the present instrument, we attempted to cut the X‐ray micro‐beam above the critical angle of the total reflection with a slit. After the slit was applied, a clear critical angle could be observed. Using this proposed instrumental setup, we applied this to the analysis of a single particle on a flat Si substrate.  相似文献   

13.
We report micro-fluorescence (μ-XRF) and micro-XANES (μ-XANES) analysis on the phase-separated samples belonging to the superconducting section Mg1−xScxB2 for x > 0.27, where we have found a phase separation into a Sc-poor and a Sc-rich region. These phase-separated samples exhibit a critical temperature higher than the pristine MgB2. We have explored the actual Sc distribution along the sample with micro-fluorescence (μ-XRF), with a beam spot size below 1 μm, and we found Sc-poor textures of 100 μm size embedded in a Sc-matrix. With μ-XANES we have studied the chemical state of the Sc in the Sc-poor region, responsible of high Tc, and found that Sc does not enter the MgB2 lattice. These results suggest that enhanced Tc could be due to the strain, which can be induced by the Sc impurities or by the Sc-rich matrix.  相似文献   

14.
Micro X-ray fluorescence was used to study both homogeneous and heterogeneous particle systems. Specifically, homogeneous glass microspheres and heterogeneous soil particle samples were prepared by both bulk and single particle sample preparation methods for evaluation by micro X-ray fluorescence. Single particle sample preparation methods allow for single particles from a collected sample to be isolated and individually presented to the micro X-ray fluorescence instrument for analysis. Various particle dispersion methods, including immobilization onto Tacky Dot™ slides, mounting onto double-sided sticky tape affixed to polypropylene film, or attachment to polypropylene film using 3M Artist's Adhesive, were used to separate the sample particles for single particle analysis. These methods were then compared and evaluated for their ability to disperse the particles into an array of single separated particles for optimal micro X-ray fluorescence characterization with minimal background contribution from the particle mounting surface. Bulk methods of particle sample preparation, which included pellet preparation and aerosol impaction, used a large quantity of collected single particles to make a single homogeneous specimen for presentation to the instrument for analysis. It was found that single particle elemental analysis by micro X-ray fluorescence can be performed if the particles are well separated (minimum separation distance = excitation source beam diameter) down to a particle mass of ∼ 0.04 ng and a mean particle diameter of ∼ 0.06 μm. Homogeneous particulates can be adequately characterized by micro X-ray fluorescence using either bulk or single particle analysis methods, with no loss of analytical information. Heterogeneous samples are much harder to characterize, and both single particle as well as bulk analyses must be performed on the sample to insure full elemental characterization by micro X-ray fluorescence.  相似文献   

15.
Single and polycapillary optics has obtained in recent times increasing attention for its potential high efficiency as device for focusing high-energy photons and thermal neutrons. The actually developed and future applications depend strongly on a detailed knowledge of the optical characteristics of such devices. Nevertheless, an exhaustive theoretical treatment of the polycapillary properties is extremely complicated due both to the intrinsic complexity of the structure and of the interaction between the X-ray photon beam and the mono- and polycapillary surfaces.Using PolyCAD, a ray-tracing original package developed by our group, here we report a wide study concerning single and polycapillary optics properties. The software allows easily to simulate the optical path inside cylindrical, conical and curved mono- and polycapillary structures; their focusing properties are also presented and discussed.  相似文献   

16.
X-ray mapping in electron-beam instruments.   总被引:1,自引:0,他引:1  
This review traces the development of X-ray mapping from its beginning 50 years ago through current analysis procedures that can reveal otherwise obscure elemental distributions and associations. X-ray mapping or compositional imaging of elemental distributions is one of the major capabilities of electron beam microanalysis because it frees the operator from the necessity of making decisions about which image features contain elements of interest. Elements in unexpected locations, or in unexpected association with other elements, may be found easily without operator bias as to where to locate the electron probe for data collection. X-ray mapping in the SEM or EPMA may be applied to bulk specimens at a spatial resolution of about 1 microm. X-ray mapping of thin specimens in the TEM or STEM may be accomplished at a spatial resolution ranging from 2 to 100 nm, depending on specimen thickness and the microscope. Although mapping has traditionally been considered a qualitative technique, recent developments demonstrate the quantitative capabilities of X-ray mapping techniques. Moreover, the long-desired ability to collect and store an entire spectrum at every pixel is now a reality, and methods for mining these data are rapidly being developed.  相似文献   

17.
Cadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence (μ-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd LIII-edge (3538 eV) micro X-ray absorption near edge structure (μ-XANES) spectroscopy. Plant μ-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at −170 °C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, μ-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd LIII-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining μ-XRF and Cd LIII-edge μ-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples.  相似文献   

18.
Total reflection X-ray fluorescence spectrometry (TXRF) has been applied for trace elemental analysis of small glass fragments. A small glass sample (a fragment with weight less than 0.5 mg) was decomposed by 100 microg of HF/HNO3 acid; the material was condensed to 10 microl and was dried on a Si wafer. Since the size of the dried residue on the Si wafer was less than 1 cm in diameter, an incident X-ray beam with about 1 cm in width could effectively excite elemental components in such a small glass fragment. The precision of the present technique was checked by analyzing the glass fragments (<0.5 mg) from NIST SRM612; the relative standard deviations (RSD) of less than 8.1% were achieved for elemental ratios that were normalized by Sr. Fragments (<0.5 mg) obtained from 23 figured sheet glasses were used as samples for estimating the utility of this technique to forensic discrimination. Comparison of five elemental ratios of Ti/Sr, Mn/Sr, Zn/Sr, Rb/Sr, and Pb/Sr calculated from X-ray fluorescence spectra was effective in distinguishing glass fragments that could not be differentiated by their refractive indexes (RI).  相似文献   

19.
Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm2 cell is 1.4 fg Pu or 2.9 × 10−20 moles Pu μm−2, which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission.  相似文献   

20.
We report a high-spatial resolution imaging technique to measure optical absorption and detect chemical and physical changes on surfaces embedded in thick tissue. Developing sensors to measure chemical concentrations on implanted surfaces through tissue is an important challenge for analytical chemistry and biomedical imaging. Tissue scattering dramatically reduces the resolution of optical imaging. In contrast, X-rays provide high spatial resolution imaging through tissue but do not measure chemical concentrations. We describe a hybrid technique which uses a scanning X-ray beam to irradiate Gd(2)O(2)S scintillators and detect the resulting visible luminescence through the tissue. The amount of light collected is modulated by optical absorption in close proximity to the luminescence source. By scanning the X-ray beam, and measuring total amount of light collected, one can measure the local absorption near scintillators at a resolution limited by the width of luminescence source (i.e. the width of the X-ray excitation beam). For proof of principle, a rectangular 1.7 mm scanning X-ray beam was used to excite a single layer of 8 μm Gd(2)O(2)S particles, and detect the absorption of 5 nm thick silver island film through 10 mm of pork. Lifetime and spectroscopic measurements, as well changing the refractive index of the surroundings indicate that the silver reduces the optical signal through attenuated total internal reflection. The technique was used to image the dissolution of regions of the silver island film which were exposed to 1 mM of H(2)O(2) through 1 cm of pork tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号