首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress.  相似文献   

2.
The physical laws characterizing the relation between stresses and strains are considered and analyzed in the general modern theory of elastoplastic deformations and in its postulates of macroscopic definability and isotropy for initially isotropic continuous media. The fundamentals of this theory in continuum mechanics were developed by A.A. Il’yushin in the mid-twentieth century. His theory of small elastoplastic deformations under simple loading became a generalization of Hencky’s deformation theory of flow, whereas his theory of elastoplastic processes which are close to simple loading became a generalization of the Saint-Venant–Mises flow theory to the case of hardening media. In these theories, the concepts of simple arid complex loading processes arid the concept of directing form change tensors are introduced; the Bridgman law of volume elastic change and the universal Roche–Eichinger laws of a single hardening curve under simple loading are adopted; and the Odquist hardening for plastic deformations is generalized to the case of elastoplastic hardening media for the processes of almost simple loading without consideration of a specific history of deformations for the trajectories with small arid mean curvatures. In this paper we discuss the possibility of using the isotropy postulate to estimate the effect of forming parameters in the stress-strain state appeared due to the strain-induced anisotropy during the change of the internal structures of materials. We also discuss the possibility of representing the second-rank symmetric stress and strain tensors in the form of vectors in the linear coordinate six-dimensional Euclidean space. An identity principle is proposed for tensors and vectors.  相似文献   

3.
Summary The main objective of the paper is the investigation of the influence of the anisotrophy and plastic spin effects on criteria for adiabatic shear band localization of plastic deformation. A theory of thermoplasticity is formulated within a framework of the rate-type covariance material structure with a finite set of internal state variables. The theory takes into consideration such effects as plastic non-normality, plastic-induced anisotropy (kinematic hardening), micro-damage mechanism, thermomechanical coupling and plastic spin. The next objective of the paper is to focus attention on cooperative phenomena in presence of the plastic spin, and the discussion on the influence of synergetic effects on localization criteria. A particular constitutive law for the plastic spin is assumed. The necessary condition for a localized plastic deformation region to be formed is obtained. This condition is accomplished by the assumption that some eigenvalues of the instantaneous adiabatic acoustic tensor vanish. A procedure has been developed which allows us to discuss two separate groups of effects on the localization phenomenon along a shear band. Plastic spin, spatial covariance and kinematic hardening effects are investigated at an isothermal process in an undamaged solid. In the second case, an adiabatic process in a damaged solid is discussed when the spatial covariance terms and the plastic spin are neglected. Here the thermomechanical coupling, micro-damage mechanism and kinematic hardening effects are examined. For both cases, the criteria for adiabatic shear band localization are obtained in an exact analytical form. Particular attention is focused on the analysis of the following effects: (i) plastic non-normality; (ii) plastic spin; (iii) covariant terms; (iv) plastic strain-induced anisotropy; (v) micro-damage mechanism; (vi) thermomechanical couplings. Cooperative phenomena are considered, and synergetic effects are investigated. A discussion of the influence of the plastic spin, kinematic hardening and covariant terms on the shear band localization conditions is presented. A numerical estimation of the effects discussed is given. Received 24 April 1997; accepted for publication 23 December 1997  相似文献   

4.
Experimental evidence for length scale effects in plasticity has been provided, e.g., by Fleck et al. (Acta Metall. Mater. 42:475–487, 1994). Results from torsional loadings on copper wires, when appropriately displayed, indicated that, for the same shear at the outer radius, the normalized torque increased with decreasing specimen radius. Modeling of the constitutive behavior in the framework of micropolar plasticity is a possibility to account for length scale effects. The present paper is concerned with this possibility and deals with the theory developed by Grammenoudis and Tsakmakis (Contin. Mech. Thermodyn. 13:325–363, 2001; Int. J. Numer. Methods Eng. 62:1691–1720, 2005; Proc. R. Soc. 461:189–205, 2005). Both isotropic and kinematic hardening are present in that theory, with isotropic hardening being captured in a unified manner. Here, we discuss isotropic hardening composed of two parts, responsible for strain and gradient effects, respectively.  相似文献   

5.
In sheet metal forming processes local material points can experience multi-axial and multi-path loadings. Under such loading conditions, conventional phenomenological material formulations are not capable to predict the deformation behavior within satisfying accuracy. While micro-mechanical models have significantly improved the understanding of the deformation processes under such conditions, these models require large sets of material data to describe the micromechanical evolution and quite enormous computation expenses for industrial applications. To reduce the drawbacks of phenomenological material models under the multi-path loadings a new anisotropic elasto-plastic material formulation is suggested. The model enables the anisotropic yield surface to grow (isotropic hardening), translate (kinematic hardening) and rotate (rotation of the anisotropy axes) with respect to the deformation, while the shape of the yield surface remains essentially unchanged.Essentially, the model is formulated on the basis of an Armstrong–Frederick type kinematic hardening, the plastic spin theory for the reorientation of the symmetry axes of the anisotropic yield function, and additional terms coupling these expressions. The capability of the model is illustrated with multi-path loading simulations in ‘tension-shear’ and ‘reverse-shear’ to assess its performance with ‘cross’ hardening and ‘Bauschinger’ effects.  相似文献   

6.
The present paper deals with plane deformation problems (ɛ z = 0) concerned with elastoplastic deformation of a space with a cylindrical cavity in the case where the load is given either at infinity or on the cavity surface. It is assumed that the material obeys the relations of the theory of flow with isotropic hardening and the von Mises plasticity condition. The effects of the elastic compressibility (Poisson’s ratio) and the coefficient of linear hardening on the stress-strain state are studied. The influence of the linear hardening is shown to be small, while that of the elastic compressibility is shown to be quite significant.  相似文献   

7.
A physically motivated and thermodynamically consistent formulation of small strain higher-order gradient plasticity theory is presented. Based on dislocation mechanics interpretations, gradients of variables associated with kinematic and isotropic hardenings are introduced. This framework is a two non-local parameter framework that takes into consideration large variations in the plastic strain tensor and large variations in the plasticity history variable; the equivalent (effective) plastic strain. The presence of plastic strain gradients is motivated by the evolution of dislocation density tensor that results from non-vanishing net Burgers vector and, hence, incorporating additional kinematic hardening (anisotropy) effects through lattice incompatibility. The presence of gradients in the effective (scalar) plastic strain is motivated by the accumulation of geometrically necessary dislocations and, hence, incorporating additional isotropic hardening effects (i.e. strengthening). It is demonstrated that the non-local yield condition, flow rule, and non-zero microscopic boundary conditions can be derived directly from the principle of virtual power. It is also shown that the local Clausius–Duhem inequality does not hold for gradient-dependent material and, therefore, a non-local form should be adopted. The non-local Clausius–Duhem inequality has an additional term that results from microstructural long-range energy interchanges between the material points within the body. A detailed discussion on the physics and the application of proper microscopic boundary conditions, either on free surfaces, clamped surfaces, or intermediate constrained surfaces, is presented. It is shown that there is a close connection between interface/surface energy of an interface or free surface and the microscopic boundary conditions in terms of microtraction stresses. Some generalities and utility of this theory are discussed and comparisons with other gradient theories are given. Applications of the proposed theory for size effects in thin films are presented.  相似文献   

8.
In order to predict the deformations under multi-axial and multi-path loadings in a phenomenological framework, a new rotational-isotropic-kinematic (RIK) hardening model has been suggested in the theory part of the paper combining isotropic, kinematic and rotational hardening. Essential features of this material model are Armstrong–Frederick type backstress components for kinematic hardening and a plastic spin for the rotational hardening describing the evolution of the symmetry axes of the anisotropic yield function.The purpose of this article is to illustrate the significance of the RIK hardening model in sheet metal forming applications as well as in springback predictions. With the rotational hardening and a correction term related to the kinematic hardening, the flow stress in each orientation can be described with few material parameters. Several benchmark problems are considered to illustrate and assess the performance of the RIK hardening model in comparison with other hardening models and experimental results.  相似文献   

9.
Maximum shear stress theory, also called the ‘Third Strength Theory’, is a classical theory used to predict the failure of common metal, but it cannot be used directly to predict sheet metal failure due to anisotropy and the loading path. Therefore, this paper proposes a maximum shear stress calculating method, which has been named “shear failure criterion” for the purpose of this paper. In order to validate the shear failure criterion, a general program was developed, and two typical materials, steel, and aluminum alloy, were used to study the new shear failure criterion in this study. The two materials were modeled by advanced constitutive models, including Hill1948 and Yld2000-2d yield functions and several types of isotropic hardening models. Experimental validation has indicated the accuracy of predicted FLD using shear failure criterion, which is able to provide a new alternative method to numerically predict FLD.  相似文献   

10.
Laboratory tests have been conducted to investigate the inelastic behaviour of aluminium alloy AA6060 T4 subjected to non-proportional cyclic loading. The results of four tests with variable strain path shapes and strain amplitudes are reported in this paper. The tests were carried out by applying combined axial force and torque to thin-walled tubular specimens, using effective strain amplitudes in the range 0.4–0.8%. Major emphasis has been put on the two important material properties: plastic anisotropy and influence of strain range and strain path shapes on cyclic hardening. A constitutive model for cyclic plasticity is used to predict the stress response of the alloy for the non-proportional strain paths applied in the experiments. The model adopts a quadratic yield function and multi-component non-linear isotropic and kinematic hardening rules to describe plastic anisotropy, the shape of the hysteresis loops and the evolution of cyclic hardening. Good agreement is obtained between the physical and correlated stress response of the alloy.  相似文献   

11.
In this paper, an exact formula for the integration of the constitutive equations of kinematic hardening material is presented. Its algorithms are simple and clear. For isotropic hardening or mixed hardening material, the formula is still an exact solution for the case of radial loading, and it is an approximate solution with reasonable accuracy for the case of non-radial loading. The computation results show that the procedure proposed in this paper improves both accuracy and efficiency of numerical integration schemes adopted widely in elastic-plastic finite element analysis.  相似文献   

12.
Plasticity laws exhibiting non-linear kinematichardening are considered within the framework of infinitesimal deformations. The evolution equations governing the response of kinematic hardening are derived as sufficient conditions in order for the intrinsic dissipation inequality to be satisfied in every process. With a view to the extension to finite deformations, two basic possibilities are proposed. In every case, an isotropic elasticity law with respect to the so-called plastic intermediate configuration is assumed to hold. The theory applicable to finite deformations is based on the concept of so-called dual variables and associated time derivatives. Thus, the main difference between the present work and other contributions in this area is the choice of the variables used to formulate the theory. In fact, using dual variables, hardening rules are derived as sufficient conditions for the intrinsic dissipation inequality to be satisfied in every process. This is quite analogous to the case of infinitesimal deformation, but now the hardening rules take a very specific form which is explained in the paper. Received June 14, 1995  相似文献   

13.
This paper brings together and concisely reviews results from recent analytical investigations on single crystals (variously done alone or with students) in which predictions from different theoretical hardening laws are contrasted and compared with experimental studies. Finitely deforming f.c.c. crystals in both constrained and unconstrained multiple-slip configurations are considered. Four crystal hardening laws are given prominence. Two of these belong to a class of theories in which the physical hardening moduli relating rates-of-change of critical strengths (in the 24 crystallographically equivalent slip systems) to slip-rates are taken as symmetric. These are G.I. Taylor's classic isotropic hardening rule (proposed in 1923), which is almost universally adopted in the metallurgical literature for various approximate analyses of single and poly-crystal deformation, and a 2-parameter modification of Taylor's rule that has an empirical basis in the qualitative features of experimentally determined latent hardening in single slip. The other two hardening laws featured here belong to a class of theories that were introduced in 1977 by this author. This class requires the above moduli to be nonsymmetric and explicity dependent upon the current stress state in such a manner that the following consequences are assured. (1) The deformation-dependent hardening of latent slip systems necessarily develops anisotropically if there is relative rotation of gross material and underlying crystal lattice. (2) The theories admit self-adjoint boundary value problems for crystalline aggregates, hence a variational formulation. (The fact that symmetric physical hardening moduli do not permit variational formulations of polycrystalline problems was shown at the 1972 Warsaw Symposium.) The two members of this class considered here are the original (and simplest p possible) theory of rotation-dependent anisotropy, which was proposed by this author in 1977 and commonly has been referred to as the “simple theory,” and a modification of this theory introduced in 1982 by Peirce, Asaro and Needleman that lies between Taylor's rule and the simple theory in its predictions for finitely deforming f.c.c. crystals. (In a series of five papers during 1977–1979, the simple theory was shown to universally account for the experimental phenomenon of “overshooting” in single slip in both f.c.c. and b.c.c. crystals.) Theoretical results from the various hardening rules are contrasted and compared with finite strain experiments in the metallurgical literature. Both tensile-loaded crystals in 4, 6 and 8-fold symmetry orientations and compressively loaded crystals under conditions of channel die constraint are treated. A postulate of minimum plastic work introduced in 1981 plays a prominent role in the theoretical analyses, in many cases providing a unique solution to the slip system inequalities and deformation constraints (where applicable). The rather remarkable ability of the simple theory to reconcile diverse qualitative features of both constrained and unconstrained finited deformation of f.c.c. crystals is demonstrated. Finally, conditions for total loading (all systems active) in 6-fold symmetry are investigated, and certain concepts regarding the selection of active systems under prescribed straining are critically assessed.  相似文献   

14.
This work addresses the formulation of the thermodynamics of nonlocal plasticity using the gradient theory. The formulation is based on the nonlocality energy residual introduced by Eringen and Edelen (1972). Gradients are introduced for those variables associated with isotropic and kinematic hardening. The formulation applies to small strain gradient plasticity and makes use of the evanescent memory model for kinematic hardening. This is accomplished using the kinematic flux evolution as developed by Zbib and Aifantis (1988). Therefore, the present theory is a four nonlocal parameter-based theory that accounts for the influence of large variations in the plastic strain, accumulated plastic strain, accumulated plastic strain gradients, and the micromechanical evolution of the kinematic flux. Using the principle of virtual power and the laws of thermodynamics, thermodynamically-consistent equations are derived for the nonlocal plasticity yield criterion and associated flow rule. The presence of higher-order gradients in the plastic strain is shown to enhance a corresponding history variable which arises from the accumulation of the plastic strain gradients. Furthermore, anisotropy is introduced by plastic strain gradients in the form of kinematic hardening. Plastic strain gradients can be attributed to the net Burgers vector, while gradients in the accumulation of plastic strain are responsible for the introduction of isotropic hardening. The equilibrium between internal Cauchy stress and the microstresses conjugate to the higher-order gradients frames the yield criterion, which is obtained from the principle of virtual power. Microscopic boundary conditions, associated with plastic flow, are introduced to supplement the macroscopic boundary conditions of classical plasticity. The nonlocal formulation developed here preserves the classical assumption of local plasticity, wherein plastic flow direction is governed by the deviatoric Cauchy stress. The theory is applied to the problems of thin films on both soft and hard substrates. Numerical solutions are presented for bi-axial tension and simple shear loading of thin films on substrates.  相似文献   

15.
Accurate and reliable predictions of yield surfaces and their evolution with deformation require a better physical representation of the important sources of anisotropy in the material. Until recently, the most physical approach employed in the current literature has been the use of polycrystalline deformation models, where it is assumed that crystallographic texture is the main contributor to the overall anisotropy. However, recent studies have revealed that the grain-scale mesostructural features (e.g. cell-block boundaries) may have a large impact on the anisotropic stress-strain behaviour, as evidenced during strain-path change tests (e.g. cross effect, Bauschinger effect).In previous papers, the authors formulated an extension of the Taylor-type crystal plasticity model by incorporating some details of the grain-scale mesostructural features. The main purpose of this paper is to study the evolution of yield surfaces in single-phase b.c.c. polycrystals during deformation and strain-path changes using this extended crystal plasticity model. It is demonstrated that the contribution of the grain-scale substructure in these metals on yield loci is comparable in magnitude to the effects caused by the differences in texture. Furthermore, it is shown that the shape of yield loci cannot be predicted accurately by the traditional polycrystalline deformation model with equal slip hardening. The trends predicted by the extended crystal plasticity model are in much better agreement with the experimental evidence reported in the literature than those represented in classical treatments by isotropic and kinematic hardening.  相似文献   

16.
Hill's 1948 anisotropic theory of plasticity (Hill, R., 1948. A theory of yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London A193, 281–297) is extended to include the concept of combined isotropic-kinematic hardening, and the objective of this paper is to validate the model so that it may be useful for analyses of sheet metal forming. Isotropic hardening and kinematic hardening may be experimentally observed in sheet metals, if yielding is defined by the proportional limit or by a small proof strain. In this paper, a single exponential term is used to describe isotropic hardening and Prager's linear kinematic hardening rule is applied for simplicity. It is shown that this model can satisfactorily describe both the yield stress and the plastic strain ratio, the R-ratio, observed in tension test of specimens cut at various angles measured from the rolling direction of the sheet. Kinematic hardening leads to a gradual change in the direction of the plastic strain increment, as the axial strain increases in the tension test; while in the traditional approach for sheet metal, this direction does not change due to the use of isotropic hardening.  相似文献   

17.
Stress and deformation analysis of the simple shear at finite strain of a strain-hardening elastoplastic hollow circular cylinder is given. Both isotropic and anistotropic hardening models are considered. In the case of isotropic hardening, there is a closed from analytical solution. No normal stresses exist in this case. Purely kinematic hardening with a Mises-type yield condition is utilized as a model of anisotropic hardening. Conventional (average) spin is taken to construct the objective Jaumann derivative needed in the structure of the corresponding constitutive laws. Governing partial differential equations are derived and solved numerically to give stress and deformation distribution following the advance of plastic flow. The extent or range of the appropriateness of the considered constitutive model is also established.  相似文献   

18.
The alignment of polymer chains is a well-known microstructural evolution effect due to straining of polymers. This has a drastic influence on the macroscopic properties of the initially isotropic material, such as a pronounced strength in the loading direction of stretched films. For modeling the effect of strain-induced anisotropy, a macroscopic constitutive model is developed in this paper. Within a thermodynamic framework, an additive decomposition of the logarithmic Hencky strain tensor into elastic and inelastic parts is used to formulate the constitutive equations. As a key idea, weighting functions are introduced to represent a strain-softening/hardening effect to account for induced anisotropy. These functions represent the ratio between the total strain rate (representing the actual loading direction) and a structural tensor (representing the stretched polymer chains). In this way, we introduce material parameters as a sum of weighted direction-related quantities. The numerical implementation of the resulting set of constitutive is used to identify material parameters based on experimental data, exhibiting strain-induced anisotropy. In the finite-element examples, we simulate the cold-forming of amorphous thermoplastic films below the glass transition temperature subjected to different re-loading directions.  相似文献   

19.
The models for the plastic behaviour of steels during phase transformations proposed in Part I and in a previous paper ( et al. [1986b]) for the case of ideal-plastic phases are extended to include strain-hardening effects (isotropic or kinematic hardening). An expression for the transformation plastic strain rate is obtained by modifying the treatment of Part I in a suitable manner. The classical plastic strain rate is also studied in a similar way. Complementary evolution equations for the hardening parameters are finally given, taking into account the possible “recovery” of strain hardening during transformations (i.e., the fact that the newly formed phase can “forget,” partially or totally, the previous hardening).  相似文献   

20.
It is demonstrated how a micromorphic plasticity theory may be formulated on the basis of multiplicative decompositions of the macro- and microdeformation gradient tensor, respectively. The theory exhibits non-linear isotropic and non-linear kinematic hardening. The yield function is expressed in terms of Mandel stress and double stress tensors, appropriately defined for micromorphic continua. Flow rules are derived from the postulate of Il’iushin and represent generalized normality conditions. Evolution equations for isotropic and kinematic hardening are introduced as sufficient conditions for the validity of the second law of thermodynamics in every admissible process. Finally, it is sketched how isotropic damage effects may be incorporated in the theory. This is done for the concept of effective stress combined with the hypothesis of strain equivalence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号