首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, fracture propagation in large shell elements is modelled with the softening law. This law is given in a general form, enabling investigations of different softening behaviours to be conducted. The final fracture is simulated by removing elements. The softening parameters are derived using the energy-based representative volume element (RVE) approach. Tracing crack propagation through the RVE defines the physically justified softening parameters for the current model. The softening model is implemented into ABAQUS using VUMAT subroutines for the shell elements. A large-scale tearing experiment is simulated with the current model and RVE-based softening parameters. In addition, the softening laws from the literature have been used. The fracture propagation is assessed in terms of plastic energy dissipation in the RVE and the whole structure, load–displacement, and crack growth. The RVE-based model is shown to have better performance compared with other models from the literature.  相似文献   

2.
The implementation of the conforming radial point interpolation method (CRPIM) for spatial thick shell structures is presented in this paper. The formulation of the discrete system equations is derived from a stress-resultant geometrically exact theory of shear flexible shells based on the Cosserat surface. A discrete singularity-free mapping between the five degrees of freedom of the Cosserat surface and the normal formulation with six degrees of freedom is constructed by exploiting the geometry connection between the orthogonal group and the unit sphere. A radial basis function is used in both the construction of shape functions based on arbitrarily distributed nodes as well as in the surface approximation of general spatial shell geometries. The major advantage of the CRPIM is that the shape functions possess a delta function property and the interpolation function obtained passes through all the scattered points in the influence domain. Thus, essential boundary conditions can be easily imposed, as in finite element method. A range of shape parameters is studied to examine the performance of CRPIM for shells, and optimal values are proposed. The phenomena of shear locking and membrane locking are illustrated by presenting the membrane and shear energies as fractions of the total energy. Several benchmark problems for shells are analyzed to demonstrate the validity and efficiency of the present CRPIM. The convergence rate of the results using a Gaussian (EXP) radial basis is relatively high compared to those using a multi-quadric (MQ) radial basis for the shell problems.  相似文献   

3.
An elastomeric gel is a cross-linked polymer network swollen with a solvent (fluid). A continuum-mechanical theory to describe the various coupled aspects of fluid permeation and large deformations (e.g., swelling and squeezing) of elastomeric gels is formulated. The basic mechanical force balance laws and the balance law for the fluid content are reviewed, and the constitutive theory that we develop is consistent with modern treatments of continuum thermodynamics, and material frame-indifference. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model for the free energy based on a Flory-Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical-mechanical model for the change in configurational entropy—a model which accounts for the limited extensibility of polymer chains. As representative examples of application of the theory, we study (a) three-dimensional swelling-equilibrium of an elastomeric gel in an unconstrained, stress-free state; and (b) the following one-dimensional transient problems: (i) free-swelling of a gel; (ii) consolidation of an already swollen gel; and (iii) pressure-difference-driven diffusion of organic solvents across elastomeric membranes.  相似文献   

4.
In this Part I, of a two-part paper, we present a detailed continuum-mechanical development of a thermo-mechanically coupled elasto-viscoplasticity theory to model the strain rate and temperature dependent large-deformation response of amorphous polymeric materials. Such a theory, when further specialized (Part II) should be useful for modeling and simulation of the thermo-mechanical response of components and structures made from such materials, as well as for modeling a variety of polymer processing operations.  相似文献   

5.
6.
7.
Thin structures are generally solved by the Finite Element Method (FEM), using plate or shell finite elements which have many limitations in applications, such as numerical locking, edge effects, length scaling and the envergence problem. Recently, by proposing a new approach to treating the nearly-singular integrals, Liu et al. developed a BEM to successfully solve thin structures with the thickness-to-length ratios in the micro- or nano-scales. On the other hand, the meshless Regular Hybrid Boundary Node Method (RHBNM), which is proposed by the current authors and based on a modified functional and the Moving Least-Square (MLS) approximation, has very promising applications for engineering problems owing to its meshless nature and dimension-reduction advantage, and not involving any singular or nearly-singular integrals. Test examples show that the RHBNM can also be applied readily to thin structures with high accuracy without any modification.  相似文献   

8.
随机结构非线性动力响应的概率密度演化分析   总被引:26,自引:5,他引:26  
李杰  陈建兵 《力学学报》2003,35(6):716-722
提出了随机结构非线性动力响应分析的概率密度演化方法.根据结构动力响应的随机状态方程,利用概率守恒原理,建立了随机结构非线性动力响应的概率密度演化方程.结合Newmark-Beta时程积分方法与Lax-Wendroff差分格式,提出了概率密度演化方程的数值分析方法.通过与Monte Carlo分析方法对比,表明所给出的概率密度演化方法具有良好的计算精度和较小的计算工作量.研究表明:随机结构非线性动力响应概率密度具有典型的演化特征,随着时间增长,概率密度曲线分布趋于复杂.  相似文献   

9.
The use of finite element and finite difference methods of spatial and temporal discretization for solving structural dynamics problems gives rise to purely numerical errors. Among the many numerical methods used to damp out the spurious oscillations occurring in the high frequency domain, it is proposed here to analyse and compare the well-known Bulk Viscosity method, which modifies the stresses calculations and a method recently presented by Tchamwa and Wielgosz, which is based on a modification of an explicit time integration algorithm. The efficiency of both methods is evaluated in a 2-D axisymmetric compressive test.  相似文献   

10.
11.
水下爆炸导致舰船结构毁伤是一个复杂的非线性大变形流固耦合过程,高精度的流固耦合计算是获得高置信模拟结果的关键。基于浸没边界思想,本文提出一种面向大变形壳理论的流固耦合数值方法,可精确刻画流固耦合界面并高效求解流固界面约束方程。基于该方法,本文提出了完整的适用于水下爆炸舰船结构毁伤的大变形流固耦合数值计算方案,并基于大规模并行编程框架,研发形成适用于舰船结构毁伤的流固耦合大规模并行计算软件。与泰勒平板理论解和水下爆炸结构冲击响应实验数据等进行对比表明,本文方法可有效模拟大变形流固耦合工程问题,具备较高数值求解精度。在此基础上,完成了水下爆炸整船结构毁伤过程大规模数值模拟。该方法可有效应用于舰船毁伤等级评估,应用前景广阔。  相似文献   

12.
王小峰  陶钢  任保祥  庞春桥  范强  刘龙 《爆炸与冲击》2019,39(1):012201-1-012201-9

为研究高旋转对30 mm聚能装药破甲作用的影响机理及自旋补偿原理,采用LS-DYNA有限元软件中的SPH方法模拟30 mm线膛炮波纹罩的压垮过程,得到粒子的实际运动可分解成向心运动与绕中心圆周切线运动,提出压垮过程的4个阶段:压垮前期、缓冲期、波纹槽区域粒子速度增大期和中心粒子相互作用期。射流形成层沿逆时针方向旋转,而形成杵体的材料以相反方向旋转。结果表明:波纹罩特殊设计可以补偿旋转扰动对30 mm聚能装药侵彻作用的负面影响。

  相似文献   

13.
结构随机分析的Monte Carlo加权残值法   总被引:3,自引:0,他引:3  
本文提出一种结构随机分析的Monte Carlo加权残值法。文中建立了这种方法的基本列式,并通过静力挠度、固有频率和屈曲荷载等算例,表明本文方法理论简捷,计算工程量少,精度较高,是随机结构数值分析的有效方法。  相似文献   

14.
Addressing the problem of spill of liquid fuel of fuel air explosive (FAE) with shell, this paper deduces variation relationship of fracture radius and fracture velocity based on continuity and motion equations of shell using the Taylor fracture criteria of cylindrical shells, and analyzes the correctness of the approximating process in detail. Furthermore, analytical solutions and numerical simulations for the liquid fuel spill process were obtained using Adomian's decomposition method (ADM) and the Runge-Kutta numerical method. Results show that both the numerical solution and the analytical solution based on ADM are closer to the result from experiments and computations from commercial dynamics numerical software.  相似文献   

15.
The physical occurrence that crack surfaces are in contact at the compressive edges when a flat or a shell is subjected to a bending load has been recognized. This article presents a theoretical analysis of crack–face contact effect on the stress intensity factor of various shell structures such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with two non-zero curvatures, under a bending load. The formulation of the problem is based on the shear deformation theory, incorporating crack–face contact by introducing distributed force at the compressive edge. Material orthotropy is concerned in this analysis. Three-dimensional finite element analysis (FEA) is conduced to compare with the theoretical solution. It is found that due to curvature effect crack–face contact behavior in shells differs from that in flat plates, in that partial contact of crack surfaces may occur in shells, depending on the shell curvature and the nature of the bending load. Crack–face contact has significant influence on the stress intensity factor and it increases the membrane component but decreases the bending component.  相似文献   

16.
The displacement-based finite element method dominates current practice for material nonlinear analysis of structures. However, there are several characteristics that may limit the effectiveness of this approach. In particular, for elastoplastic analysis, the displacement method relies upon a step-by-step incremental approach stemming from flow theory and also requires significant mesh refinement to resolve behavior in plastic zones. This leads to computational inefficiencies that, in turn, encourage the reconsideration of force-based approaches for elastoplastic problems.One of these force algorithms that has been recently developed is the large increment method. The main advantage of the flexibility-based large increment method (LIM) over the displacement method is that it separates the global equilibrium and compatibility equations from the local constitutive relations. Consequently, LIM can reach the solution in one large increment or in a few large steps, thus, avoiding the development of cumulative errors. This paper discusses the extension of the large increment methodology for the nonlinear analysis of plane frame structures controlled by an elastic, perfectly plastic material model. The discussion focuses on the power of LIM to handle these nonlinear problems, especially when plastic hinges form in the frame and ultimately as the structure approaches the collapse stage. Illustrative planar frame examples are presented and the results are compared with those obtained from a standard displacement method.  相似文献   

17.
18.
张正  韩旭  姜潮 《计算力学学报》2011,28(5):671-675
针对大型工程结构动力响应求解效率较低的问题,提出了一种基于减基法的快速求解方法。该方法对动力学方程进行时间域积分构建减基空间,利用Galerkin映射向减基空间进行投影得到减缩方程,利用减缩方程快速求得原系统的逼近解,从而大大提高了动力学方程的求解效率。该方法还考虑了Galerkin映射下的奇异性计算,文中算例验证了该...  相似文献   

19.
Allen Taflove 《Wave Motion》1988,10(6):547-582
This paper reviews the basis and applications of the finite-difference time -domain (FD-TD) numerical modeling approach for Maxwell's equations. FD-TD is very simple in concept and execution. However, it is remarkably robust, providing highly accurate modeling predictions for a wide variety of electromagnetic wave interaction problems. The accuracy and breadth of FD-TD applications will be illustrated by a number of two- and three-dimensional examples. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. In all cases where rigorous analytical, code-to-code, or experimental validations are possible, FD-TD predictive data for penetrating and scattered near fields as well as radar cross sections are in excellent agreement with the benchmarks. It will also be shown that opportunities are arising in applying FD-TD to model rapidly time-varying systems, microwave circuits, and inverse scattering. With continuing advances in FD-TD modeling theory as well as continuing advances in supercomputer technology, there is a strong possibility that FD-TD numerical modeling will occupy an important place in high-frequency engineering electromagnetics as we move into the 1990s.  相似文献   

20.
A practical method of calculation for the optimal lectotype of complex structures is presented in this paper. On the basis of the initial structural style and designing experience, a calculating model for the optimal lectotype is established. After approximate processing of the objective functions and constraint conditions, the lectotype problem is transformed into one for solving canonical quadratic programming based on the Kuhu-Tucker condition and Lagrange multiplier. Thus the calculating process will become simpler, more reliable and accurate by introducing the weighted factor and utilizing an improved variable metric method [1].I hereby express my thanks to ray students Shuang-Bei Li, Yi-Min Song and others for their valuable help in making the calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号