首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The asymptotic Lyapunov stability with probability one of multi-degree-of freedom quasi-partially integrable and non-resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises is studied. First, the averaged stochastic differential equations for quasi partially integrable and non-resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are derived by means of the stochastic averaging method and the stochastic jump-diffusion chain rule. Then, the expression of the largest Lyapunov exponent of the averaged system is obtained by using a procedure similar to that due to Khasminskii and the properties of stochastic integro-differential equations. Finally, the stochastic stability of the original quasi-partially integrable and non-resonant Hamiltonian systems is determined approximately by using the largest Lyapunov exponent. An example is worked out in detail to illustrate the application of the proposed method. The good agreement between the analytical results and those from digital simulation show that the proposed method is effective.  相似文献   

2.
A stochastic averaging method for predicting the response of quasi-integrable and non-resonant Hamiltonian systems to combined Gaussian and Poisson white noise excitations is proposed. First, the motion equations of a quasi-integrable and non-resonant Hamiltonian system subject to combined Gaussian and Poisson white noise excitations is transformed into stochastic integro-differential equations (SIDEs). Then $n$ -dimensional averaged SIDEs and generalized Fokker–Plank–Kolmogrov (GFPK) equations for the transition probability densities of $n$ action variables and $n$ - independent integrals of motion are derived by using stochastic jump–diffusion chain rule and stochastic averaging principle. The probability density of the stationary response is obtained by solving the averaged GFPK equation using the perturbation method. Finally, as an example, two coupled non-linear damping oscillators under both external and parametric excitations of combined Gaussian and Poisson white noises are worked out in detail to illustrate the application and validity of the proposed stochastic averaging method.  相似文献   

3.
This paper studies chaotic motions in quasi-integrable Hamiltonian systems with slow-varying parameters under both harmonic and noise excitations. Based on the dynamic theory and some assumptions of excited noises, an extended form of the stochastic Melnikov method is presented. Using this extended method, the homoclinic bifurcations and chaotic behavior of a nonlinear Hamiltonian system with weak feed-back control under both harmonic and Gaussian white noise excitations are analyzed in detail. It is shown that the addition of stochastic excitations can make the parameter threshold value for the occurrence of chaotic motions vary in a wider region. Therefore, chaotic motions may arise easily in the system. By the Monte-Carlo method, the numerical results for the time-history and the maximum Lyapunov exponents of an example system are finally given to illustrate that the presented method is effective.  相似文献   

4.
The response of quasi-integrable Hamiltonian systems with delayed feedback bang–bang control subject to Gaussian white noise excitation is studied by using the stochastic averaging method. First, a quasi-Hamiltonian system with delayed feedback bang–bang control subjected to Gaussian white noise excitation is formulated and transformed into the Itô stochastic differential equations for quasi-integrable Hamiltonian system with feedback bang–bang control without time delay. Then the averaged Itô stochastic differential equations for the later system are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution of the averaged Fokker–Plank–Kolmogorov (FPK) equation associated with the averaged Itô equations is obtained for both nonresonant and resonant cases. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed method and the effect of time delayed feedback bang–bang control on the response of the systems.  相似文献   

5.
A stochastic averaging method is proposed to predict approximately the response of quasi-integrable Hamiltonian systems to combined harmonic and white noise excitations. According to the proposed method, an n+α+β-dimensional averaged Fokker-Planck-Kolmogorov (FPK) equation governing the transition probability density of n action variables or independent integrals of motion, α combinations of angle variables and β combinations of angle variables and excitation phase angles can be constructed when the associated Hamiltonian system has α internal resonant relations and the system and harmonic excitations have β external resonant relations. The averaged FPK equation is solved by using the combination of the finite difference method and the successive over relaxation method. Two coupled Duffing-van der Pol oscillators under combined harmonic and white noise excitations is taken as an example to illustrate the application of the proposed procedure and the stochastic jump and its bifurcation as the system parameters change are examined.  相似文献   

6.
An n degree-of-freedom (DOF) non-integrable Hamiltonian system subject to light damping and weak stochastic excitation is called quasi-non-integrable Hamiltonian system. In the present paper, the stochastic averaging of quasi-non-integrable Hamiltonian systems is briefly reviewed. A new norm in terms of the square root of Hamiltonian is introduced in the definitions of stochastic stability and Lyapunov exponent and the formulas for the Lyapunov exponent are derived from the averaged Itô equations of the Hamiltonian and of the square root of Hamiltonian. It is inferred that the Lyapunov exponent so obtained is the first approximation of the largest Lyapunov exponent of the original quasi-non-integrable Hamiltonian systems and the necessary and sufficient condition for the asymptotic stability with probability one of the trivial solution of the original systems can be obtained approximately by letting the Lyapunov exponent to be negative. This inference is confirmed by comparing the stability conditions obtained from negative Lyapunov exponent and by examining the sample behaviors of averaged Hamiltonian or the square root of averaged Hamiltonian at trivial boundary for two examples. It is also verified by the largest Lyapunov exponent obtained using small noise expansion for the second example.  相似文献   

7.
8.
The asymptotic Lyapunov stability with probability one of multi-degree-of-freedom quasi linear systems subject to multi-time-delayed feedback control and multiplicative (parametric) excitation of wide-band random process is studied. First, the multi-time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into ordinary quasi linear system. Then, the averaged Itô stochastic differential equations are derived by using the stochastic averaging method for quasi linear systems and the expression for the largest Lyapunov exponent of the linearized averaged Itô equations is derived. Finally, the necessary and sufficient condition for the asymptotic Lyapunov stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent to be negative. An example is worked out in detail to illustrate the application and validity of the proposed procedure and to show the effect of the time delay in feedback control on the largest Lyapunov exponent and the stability of system.  相似文献   

9.
An n degree-of-freedom Hamiltonian system with r(1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system and a partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi partially integrable Hamiltonian system. In the present paper, the averaged Itô and Fokker-Planck-Kolmogorov (FPK) equations for quasi partially integrable Hamiltonian systems in both cases of non-resonance and resonance are derived. It is shown that the number of averaged Itô equations and the dimension of the averaged FPK equation of a quasi partially integrable Hamiltonian system is equal to the number of independent first integrals in involution plus the number of resonant relations of the associated Hamiltonian system. The technique to obtain the exact stationary solution of the averaged FPK equation is presented. The largest Lyapunov exponent of the averaged system is formulated, based on which the stochastic stability and bifurcation of original quasi partially integrable Hamiltonian systems can be determined. Examples are given to illustrate the applications of the proposed stochastic averaging method for quasi partially integrable Hamiltonian systems in response prediction and stability decision and the results are verified by using digital simulation.  相似文献   

10.
Zhu  W. Q. 《Nonlinear dynamics》2004,36(2-4):455-470
A procedure for designing a feedback control to asymptotically stabilize, with probability one, a quasi nonintegrable Hamiltonian system is proposed. First, the motion equations of a system are reduced to a one-dimensional averaged Itô stochastic differential equation for controlled Hamiltonian by using the stochastic averaging method for quasi nonintegrable Hamiltonian systems. Second, a dynamical programming equation for the ergodic control problem of the averaged system with undetermined cost function is established based on the dynamical programming principle. This equation is then solved to yield the optimal control law. Third, a formula for the Lyapunov exponent of the completely averaged Itô equation is derived by introducing a new norm for the definitions of stochastic stability and Lyapunov exponent in terms of the square root of Hamiltonian. The asymptotic stability with probability one of the originally controlled system is analysed approximately by using the Lyapunov exponent. Finally, the cost function is determined by the requirement of stabilizing the system. Two examples are given to illustrate the application of the proposed procedure and the effectiveness of control on stabilizing the system.  相似文献   

11.
The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with multi-time-delayed feedback control subject to wide-band noise excitations is studied. First, the time-delayed feedback control forces are expressed approximately in terms of the system state variables without time delay and the system is converted into an ordinary quasi-integrable Hamiltonian system. The averaged It? stochastic differential equations are derived by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then the expression for average bifurcation parameter of the averaged system is obtained approximately and a criterion for determining the stochastic Hopf bifurcation induced by time-delayed feedback control forces in the original system using average bifurcation parameter is proposed. An example is worked out in detail to illustrate the criterion and its validity and to show the effect of time delay in feedback control on stochastic Hopf bifurcation of the system.  相似文献   

12.
A procedure for designing optimal bounded control to minimize the response of quasi-integrable Hamiltonian systems is proposed based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stochastic dynamical programming principle. The equations of motion of a controlled quasi-integrable Hamiltonian system are first reduced to a set of partially completed averaged Itô stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, the dynamical programming equation for the control problems of minimizing the response of the averaged system is formulated based on the dynamical programming principle. The optimal control law is derived from the dynamical programming equation and control constraints without solving the dynamical programming equation. The response of optimally controlled systems is predicted through solving the Fokker-Planck-Kolmogrov equation associated with fully completed averaged Itô equations. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

13.
A stochastic fractional optimal control strategy for quasi-integrable Hamiltonian systems with fractional derivative damping is proposed. First, equations of the controlled system are reduced to a set of partially averaged It $\hat{o}$ stochastic differential equations for the energy processes by applying the stochastic averaging method for quasi-integrable Hamiltonian systems and a stochastic fractional optimal control problem (FOCP) of the partially averaged system for quasi-integrable Hamiltonian system with fractional derivative damping is formulated. Then the dynamical programming equation for the ergodic control of the partially averaged system is established by using the stochastic dynamical programming principle and solved to yield the fractional optimal control law. Finally, an example is given to illustrate the application and effectiveness of the proposed control design procedure.  相似文献   

14.
A stochastic averaging method of quasi integrable and resonant Hamiltonian systems under excitation of fractional Gaussian noise(fGn) with the Hurst index 1/2 H 1 is proposed. First, the definition and the basic property of f Gn and related fractional Brownian motion(fBm) are briefly introduced. Then, the averaged fractional stochastic differential equations(SDEs) for the first integrals and combinations of angle variables of the associated Hamiltonian systems are derived. The stationary probability density and statistics of the original systems are then obtained approximately by simulating the averaged SDEs numerically. An example is worked out to illustrate the proposed stochastic averaging method. It is shown that the results obtained by using the proposed stochastic averaging method and those from digital simulation of original system agree well.  相似文献   

15.
利用摄动方法和Fokker-Planck算子及其伴随算子的特征函数展开法,讨论了两个模态都处于临介状态的耦合二自由度振动系统,在小强度的非高斯噪声参数激励下系统运动的稳定性,获得了系统扩散过程的稳态概率密度的渐近表达式,建立了系统最大Lyapunov指数的渐近表达式,由此获得了系统运动模态几乎必然稳定的充分必要条件。  相似文献   

16.
In carrying out the statistical linearization procedure to a non-linear system subjected to an external random excitation, a Gaussian probability distribution is assumed for the system response. If the random excitation is non-Gaussian, however, the procedure may lead to a large error since the response of bother the original non-linear system and the replacement linear system are not Gaussian distributed. It is found that in some cases such a system can be transformed to one under parametric excitations of Gaussian white noises. Then the quasi-linearization procedure, proposed originally for non-linear systems under both external and parametric excitations of Gaussian white noises, can be applied to these cases. In the procedure, exact statistical moments of the replacing quasi-linear system are used to calculate the linearization parameters. Since the assumption of a Gaussian probability distribution is avoided, the accuracy of the approximation method is improved. The approach is applied to non-linear systems under two types of non-Gaussian excitations: randomized sinusoidal process and polynomials of a filtered process. Numerical examples are investigated, and the calculated results show that the proposed method has higher accuracy than the conventional linearization, as compared with the results obtained from Monte Carlo simulations.  相似文献   

17.
Zhu  W. Q.  Deng  M. L.  Huang  Z. L. 《Nonlinear dynamics》2003,33(2):189-207
The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged Itô equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.  相似文献   

18.
A new procedure for designing optimal bounded control of stochastically excited multi-degree-of-freedom (MDOF) nonlinear viscoelastic systems is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the system is formulated as a quasi-integrable Hamiltonian system with viscoelastic terms and each viscoelastic term is replaced approximately by an elastically restoring force and a visco-damping force based on the randomly periodic behavior of the motion of quasi-integrable Hamiltonian system. Thus, a stochastically excited MDOF nonlinear viscoelastic system is converted to an equivalent quasi-integrable Hamiltonian system without viscoelastic terms. Then, by applying stochastic averaging, the system is further reduced to a partially averaged system of less dimension. The adjoint equation and maximum condition for the optimal control problem of the partially averaged system are derived by using the stochastic maximum principle, and the optimal bounded control force is determined from the maximum condition. Finally, the probability and statistics of the stationary response of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation (FPK) associated with the fully averaged Itô equation of the controlled system. An example is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

19.
At the state of statistical stationarity, the response of a nonlinear system under multiplicative random excitations can be either trivial or non-trivial, depending on the spectral levels of the excitations and the values of certain system parameters. Assuming that the random excitations are Gaussian white noises, the two types of response may be investigated by way of their stationary densities, which are obtainable for first order dynamical systems and for higher order dynamical systems belonging to the class of generalized stationary potential. Alternatively, the Lyapunov exponents can be computed for perturbation from either the trivial or non-trivial solution, since a negative sign for the greatest Lyapunov exponent provides both the necessary and sufficient conditions for the stability of sample functions with probability one. It is shown in two specific examples, that the boundary at which the greatest Lyapunov exponent changes its sign coincides with the boundary for regularity (or being normalizable) for the probability density in both the trivial and non-trivial solutions. Thus, the stability conditions in the strong sense of probability one and the weak sense in distribution are identical in these cases.  相似文献   

20.
The Lyapunov exponent and moment Lyapunov exponents of Hill’s equation with frequency and damping coefficient fluctuated by white noise stochastic process are investigated. A perturbation approach is used to obtain explicit expressions for these exponents in the presence of small intensity noises. The results are applied to the study of the almost-sure and the moment stability of the stationary solutions of the thin simply supported beam subjected to axial compressions and time-varying damping which are small intensity stochastic excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号