首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard (p° = 0.1 MPa) molar enthalpies of formation of 3-acetylbenzonitrile and benzoylacetonitrile, in the crystalline phase, were derived from the respective standard massic energies of combustion measured by static bomb combustion calorimetry, in oxygen, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by Calvet microcalorimetry. From the above experimentally determined enthalpic parameters, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, are found to be: (52.4 ± 2.1) kJ · mol−1 and (74.8 ± 2.5) kJ · mol−1 for 3-acetylbenzonitrile and benzoylacetonitrile, respectively.Molecular structures were computed using highly accurate ab initio techniques. Standard molar enthalpies of formation of the experimentally studied compounds were derived using an appropriate set of working reactions. Very good agreement between the calculated and the experimental values was obtained, so the calculations were extended to the estimates of the standard molar enthalpies of formation of 2- and 4-acetylbenzonitriles whose study was not performed experimentally.Our results were further interpreted and rationalized in terms of the enthalpic stability and compared to other relevant disubstituted benzenes.  相似文献   

2.
Heat capacities and phase-transition properties for xanthone (IUPAC name 9H-xanthen-9-one and Chemical Abstracts registry number [90-47-1]) are reported for the temperature range 5 < T/K < 524. Statistical calculations were performed and thermodynamic properties for the ideal gas were derived based on molecular geometry optimization and vibrational frequencies calculated at the B3LYP/6-31+G(d,p) level of theory. These results are combined with sublimation pressures from the literature to allow critical evaluation of inconsistent enthalpies of sublimation for xanthone, also reported in the literature. Literature values for the enthalpy of combustion of xanthone are re-assessed, a revision is recommended for one result, and a new value for the enthalpy of formation of the ideal gas is derived. Comparisons with thermophysical properties reported in the literature are made for all other reported and derived properties, where possible.  相似文献   

3.
Thermochemical properties of uracil and thymine have been evaluated using additional experiments. Standard (p0 = 0.1 MPa) molar enthalpies of formation in the gas phase at T = 298.15 K for uracil −(298.1 ± 0.6) and for thymine −(337.6 ± 0.9) kJ · mol−1 have been derived from energies of combustion measured by static bomb combustion calorimetry and molar enthalpies of sublimation determined using the transpiration method. The G3 and G4 quantum-chemical methods were used for calculations of theoretical gaseous enthalpies of formation being in very good agreement with the re-measured experimental values.  相似文献   

4.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two bromine fluorene derivatives: 2-bromofluorene and 2,7-dibromofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The vapour pressures of the crystalline phase of the two compounds were measured using the Knudsen effusion method and a static method that has also been used to measure the liquid vapour pressures of 2-bromofluorene. From these results the standard molar enthalpies, entropies and Gibbs energies of sublimation of the two compounds studied and of vapourisation of 2-bromofluorene were derived. The enthalpies and temperatures of fusion were determined from DSC experiments. Derived results of standard enthalpies and Gibbs energies of formation, in both gaseous and crystalline phases, were compared with the ones reported in the literature for fluorene.The experimental values of the gas-phase enthalpies of formation of each compound were compared with estimates based on density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with the 6-311++G(d,p) basis set.  相似文献   

5.
The vapor pressures of crystalline and liquid phases of methyl p-hydroxybenzoate and of methyl p-methoxybenzoate were measured over the temperature ranges (338.9 to 423.7) K and (292.0 to 355.7) K respectively, using a static method based on diaphragm capacitance gauges. The vapor pressures of the crystalline phase of the former compound were also measured in the temperature range (323.1 to 345.2) K using a Knudsen mass-loss effusion technique. The results enabled the determination of the standard molar enthalpies, entropies and Gibbs free energies of sublimation and of vaporization, at T = 298.15 K, as well as phase diagram representations of the (p, T) experimental data, including the triple point. The temperatures and molar enthalpies of fusion of both compounds were determined using differential scanning calorimetry and were compared with the results indirectly derived from the vapor pressure measurements. The standard (p° = 105 Pa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental results, the standard molar enthalpies of formation, in the gaseous phase at T = 298.15 K, were calculated and compared with the values estimated by employing quantum chemical computational calculations. A good agreement between experimental and theoretical results is observed. To analyze the thermodynamic stability of the two compounds studied, the standard Gibbs free energies of formation in crystalline and gaseous phases were undertaken. The standard molar enthalpies of formation of the title compounds were also estimated from two different computational approaches using density functional theory-based B3LYP and the multilevel G3 methodologies.  相似文献   

6.
The present work reports an experimental and computational study of the energetics of 1,2-benzisothiazol-3(2H)-one and 1,4-benzothiazin-3(2H, 4H)-one. The standard (p° = 0.1 MPa) massic energy of combustion, at T = 298.15 K, of each compound was measured by rotating bomb combustion calorimetry, in oxygen that allowed the calculation of the respective standard molar enthalpy of formation, in the condensed phase, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by high-temperature Calvet microcalorimetry. From the combination of data obtained by both techniques we have calculated the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K. In addition, computational calculations were carried using the density functional theory with the B3LYP functional and the 6-31G1 basis set and some correlations between structure and energetics were obtained for the keto and enol forms of both compounds. Using the G3(MP2)//B3LYP composite method and various appropriate reactions, the standard molar enthalpies of formation of 1,2-benzisothiazol-3(2H)-one and 1,4-benzothiazin-3(2H, 4H)-one, at T = 298.15 K, were computationally derived and compared with the experimental data. The aromaticity of 1,2-benzisothiazol-3(2H)-one, 1,4-benzothiazin-3(2H, 4H)-one and that of some related species was evaluated by analysis of nucleus independent chemical shifts (NICS).  相似文献   

7.
In the present work, the standard (p° = 0.1 MPa) molar enthalpies of formation of xanthydrol, 9-xanthenecarboxylic acid and 9-xanthenecarboxamide, in the gaseous state, at T = 298.15 K, were determined by experimental and computational studies. The experimental techniques used were the static-bomb combustion calorimetry, which enabled the determination of the standard molar enthalpy of formation, in the crystalline state, and the vacuum drop microcalorimetric and the Knudsen effusion techniques used to derive the enthalpy of sublimation. For comparison purposes, we performed standard ab initio molecular orbital calculations, using the G3(MP2)//B3LYP composite procedure, of the enthalpies of several homodesmotic reactions, allowing to extract the standard molar enthalpies of formation, in the gaseous state, of the three xanthene derivatives considered in this work. The calculated results are in good agreement with the experimental data.  相似文献   

8.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of 1-phenylpyrrole and 1-(4-methylphenyl)pyrrole, at T = 298.15 K, were derived from the standard molar energies of combustion in oxygen, measured by static-bomb combustion calorimetry. For these compounds, the standard molar enthalpies of sublimation, at T = 298.15 K, were determined from the temperature–vapour pressure dependence, obtained by the Knudsen mass-loss effusion method. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds, the standard (p° = 0.1 MPa) molar enthalpies, entropies, and Gibbs energies of sublimation, at T = 298.15 K, were derived. From the experimental values, the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated.Additionally, the enthalpies of formation of both compounds were estimated using the composite G3(MP2)//B3LYP approach together with adequate gas-phase working reactions. There is a very good agreement between computational and experimental results.  相似文献   

9.
This report presents a comprehensive experimental and computational study of the thermodynamic properties of two fluorene derivatives: 2-aminofluorene and 2-nitrofluorene. The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. A Knudsen effusion method was used to perform the vapour pressure study of the referred compounds, yielding an accurate determination of the standard molar enthalpies and entropies of sublimation. The enthalpies of sublimation were also determined using Calvet microcalorimetry and the enthalpy and temperature of fusion were derived from DSC experiments. Derived results of standard enthalpy and Gibbs energy of formation in both gaseous and crystalline phases were compared with the ones reported in literature for fluorene. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared to the experimental values.  相似文献   

10.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures of the three crystalline isomers of methylbenzamide. From the temperature dependence of the vapour pressures, the standard molar enthalpies of sublimation and the enthalpies of the intermolecular hydrogen bonds N−H⋯O were calculated. The temperature and molar enthalpy of fusion of the studied isomers were measured using differential scanning calorimetry. The values of the standard (p° = 0.1 MPa) molar enthalpy of formation in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental values, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were calculated and compared with the values estimated by employing computational calculations that were conducted using different quantum chemical methods: G3(MP2), G3, and CBS-QB3. Good agreement between experimental and theoretical results is verified. The aromaticity of the compounds has been evaluated through nucleus independent chemical shifts (NICS) calculations.  相似文献   

11.
The present work reports an experimental study on the energetics of 2,1,3-benzothiadiazole and a computational study on its structure, energetics and aromaticity. In the experimental part the standard ( = 0.1 MPa) massic energy of combustion, at T = 298.15 K, was measured by rotating bomb combustion calorimetry, in oxygen, and allowed the calculation of the respective standard molar enthalpy of formation, in the crystalline phase, at T = 298.15 K. The standard molar enthalpy of sublimation, at T = 298.15 K, was measured by high-temperature Calvet microcalorimetry. From the combination of data obtained by both techniques we were able to calculate the respective standard molar enthalpy of formation, in the gas phase, at T = 298.15 K: (276.6 ± 2.5) kJ · mol−1. This thermochemical parameter was compared with estimates obtained from high level ab initio quantum chemical calculations using the G3(MP2)//B3LYP composite method and various appropriately chosen reactions. The molecular structure of 2,1,3-benzothiadiazole was obtained from DFT calculations with the B3LYP density functional and various basis sets: 6-31G(d), 6-311(d,p), 6-311+G(3df,2p), aug-ccpVTZ and aug-ccpVQZ and its aromaticity and that of some related molecules were evaluated by analysis of nucleus independent chemical shifts (NICS) values.  相似文献   

12.
The standard (p   =  0.1MPa) molar enthalpies of combustion in oxygen, at T =  298.15 K, for crystalline picolinamide (2-NH2COPy), nicotinamide (3-NH2COPy), isonicotinamide (4-NH2COPy), nicotinamide N -oxide (3- NH2COPyNO), and isonicotinamide N - oxide (4-NH2COPyNO) were measured by static-bomb calorimetry. These values were used to derive the standard molar enthalpies of formation of the crystalline compounds. The standard molar enthalpies of sublimation, at T =  298.15 K, for the three pyridinecarboxamide isomers were measured by microcalorimetry and the standard molar enthalpies of sublimation for the two pyridinecarboxamide N -oxide compounds were measured by a mass-loss effusion technique. From the enthalpies of formation of the gaseous compounds, the molar dissociation enthalpies Dmoof the (N + – O  ) covalent bonds were derived. Comparison has been made with Dmo(N–O) values in pyridine N -oxide derivatives.  相似文献   

13.
The standard molar energies of combustion, at T = 298.15 K, of crystalline 1,4-benzodioxan-2-carboxylic acid and 1,4-benzodioxan-2-hydroxymethyl were measured by static bomb calorimetry in an oxygen atmosphere. The standard molar enthalpies of sublimation, at T = 298.15 K, were obtained by Calvet microcalorimetry. These values were used to derive the standard molar enthalpies of formation of the compounds in the gas phase at T = 298.15 K: 1,4-benzodioxan-2-carboxylic acid ?(547.7 ± 3.0) kJ · mol?1 and 1,4-benzodioxan-2-hydroxymethyl ?(374.2 ± 2.3) kJ · mol?1.In addition, density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets, 6-311G7 and cc-pVTZ, have been performed for the compounds studied. We have also tested two more accurate computational procedures involving multiple levels of electron structure theory in order to get reliable estimates of the thermochemical parameters of the compounds studied. The agreement between experiment and theory gives confidence to estimate the enthalpies of formation of other 2-R derivatives of 1,4-benzodioxan (R = –CH2COOH, –OH, –COCH3, –CHO, –CH3, –CN, and –NO2).  相似文献   

14.
The salt bis-tetrapropylammonium tetrachloroantimonate (III) is crystallized in the monoclinic system with the P21/c space group. The unit cell dimensions are: a = 18.1973(5) Å, b = 15.7225(4) Å, c = 13.6491(3) Å, β = 91.65(1)° and Z = 4. The vibrational spectra have been measured at room temperature by FT-infrared spectroscopy (4000–400 cm−1) on polycrystalline samples, and by FT-Raman spectroscopy (3500–30 cm−1) on monocrystals. The structure of the 2[N(C3H7)4]SbCl4 formed by two types of cations (C3H7)4N+ and two types of anions [SbCl4] was optimized by density functional theory (DFT) using the B3LYP method. Actually the values obtained by the B3LYP/LanL2MB basis with the aid of a calculation of the potential energy distribution (PED) are in good agreement with the experimental data. A root mean square (rms) difference value was calculated and the small differences between experimental and calculated modes have been interpreted by intermolecular interactions with-in the crystal. A comparison between the results of the 2[N(C3H7)4]SbCl4 compound and the simulated compounds based on the (CH3)4N+) and (C2H5)4N+ fragments, shows an increase in the wavenumber of the bands assigned to the stretching vibration of the (NC) group for the 2[N(C3H7)4]SbCl4 compound. The comparison between the [N(C3H7)4]Cl ligand and the 2[N(C3H7)4]SbCl4 compound of the infrared and Raman spectrum shows an increase in the wavenumber for the bands assigned to the stretching vibration of (CH3) and the bending vibration of (NC4) groups in the 2[N(C3H7)4]SbCl4 compound.  相似文献   

15.
The coordination of heterocyclic thiourea ligands (L = N-(2-pyridyl)-N′-phenylthiourea (1), N-(2-pyridyl)-N′-methylthiourea (2), N-(3-pyridyl)-N′-phenylthiourea (3), N-(3-pyridyl)-N′-methylthiourea (4), N-(4-pyridyl)-N′-phenylthiourea (5), N-(2-pyrimidyl)-N′-phenylthiourea (6), N-(2-pyrimidyl)-N′-methylthiourea (7), N-(2-thiazolyl)-N′-methylthiourea (8), N-(2-benzothiazolyl)-N′-methylthiourea (9), N,N′-bis(2-pyridyl)thiourea (10) and N,N′-bis(3-pyridyl)thiourea (11)) with CuX (X = Cl, Br, I, NO3) has been investigated. CuX:L product stoichiometries of 1:1–1:5 were found, with 1:1 being most common. X-ray structures of four 3-coordinate mononuclear CuXL2 complexes (CuCl(6)2, CuCl(7)2, CuBr(6)2, and CuBr(9)2) are reported. In contrast, CuBr(1)2 is a 1D sulfur-bridged polymer. CuIL structures (L = 7, 8) are 1D chains with corner-sharing Cu2(μ-I)2 and Cu2(μ-S)2 units, and CuCl(10) is a 2D network having μ-Cl and N-/S-bridging L. Two [CuL2]NO3 structures are reported: a mononuclear 4-coordinate copper complex with chelating ligands (L = 10) and a 1D link-chain with N-/S-bridging L (L = 3). Two ligand oxidative cyclizations were encountered during crystallization. CuI crystallized with 6 to produce zigzag ladder polymer [(CuI)2(12)]·½CH3CN (12 = N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine) and CuNO3 crystallized with 10 to form [Cu2(NO3)(13)2(MeCN)]NO3 (13 = dipyridyltetraazathiapentalene).  相似文献   

16.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values.  相似文献   

17.
Two substituted N-acylthioureas and the respective Ni(II) and Cu(II) complexes were synthesized, namely: N,N-di-n-butyl-N′-thenoylthiourea (Hnbtu); N,N-di-iso-butyl-N′-thenoylthiourea (Hibtu); bis[N,N-di-n-butyl-N′-thenoylthioureato]nickel(II), [Ni(nbtu)2]; bis[N,N-di-n-butyl-N′-thenoylthioureato]copper(II), [Cu(nbtu)2]; bis[N,N-di-iso-butyl-N′-thenoylthioureato]nickel(II), [Ni(ibtu)2]; bis[N,N-di-iso-butyl-N′-thenoylthioureato]copper(II), [Cu(ibtu)2]. The standard (p° = 0.1 MPa) molar enthalpies of formation and sublimation of the two N-acylthioureas were measured, at T = 298.15 K, by rotating-bomb combustion calorimetry and Calvet microcalorimetry, respectively. The standard (p° = 0.1 MPa) molar enthalpies of formation of the Ni(II) and Cu(II) complexes were determined, at T = 298.15 K, by high precision solution–reaction calorimetry. From the results obtained, the enthalpies of hypothetical metal–ligand and metal–metal exchange reactions, in the gaseous phase, were derived, thus allowing a discussion of the gaseous phase energetic difference between the complexation of Ni(II) and Cu(II) to 1,3-ligand systems with (S,O) ligator atoms.  相似文献   

18.
《Vibrational Spectroscopy》2007,43(2):405-414
The catena-poly[{aqua(η2-indole-3-propionato-O,O′)zinc}-η2-:-μ-indole-3-propionato-O,O′:-O], [Zn(I3PA)2(H2O)]n was prepared and characterized by infrared spectroscopy and X-ray structure determination. The crystals are monoclinic, space group Pc, with a = 21.380(2), b = 5.9076(7), c = 8.1215(9) Å, V = 1020.2(2) Å3 and Z = 2. The central zinc atom shows the coordination distorted from ideal octahedral. Each zinc centre is coordinated by two oxygen atoms of the bidentate chelating indole-3-propionato (I3PA), two oxygen atoms tridentate chelating-bridging I3PA, water molecule and one oxygen atom tridentate chelating-bridging I3PA from an adjacent [Zn(I3PA)2(H2O)] unit. The infrared spectrum of [Zn(I3PA)2(H2O)]n in the solid state is supported by X-ray analysis. The theoretical wavenumbers and infrared intensities have been calculated by the density functional methods (B3LYP and mPW1PW) with the 6-311++G(d,p)/LanL2DZ basis sets. The theoretical wavenumbers, infrared intensities show a good agreement with experimental data. Detailed band assignment has been made on the basis of the calculated potential energy distribution (PED).  相似文献   

19.
The standard (p° = 0.1 MPa) molar energies of combustion in oxygen, at T = 298.15 K, of 5-, 6- and 7-methoxy-α-tetralone were measured by static bomb calorimetry. The values of the standard molar enthalpies of sublimation were obtained by Calvet microcalorimetry and corrected to T = 298.15 K. Combining these results, the standard molar enthalpies of formation of the compounds, in the gas phase, at T = 298.15 K, have been calculated, 5-methoxy-α-tetralone -(244.8 ± 1.9) kJ · mol?1, 6-methoxy-α-tetralone ?(243.0 ± 2.8) kJ · mol?1 and 7-methoxy-α-tetralone ?(242.3 ± 2.6) kJ · mol?1.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets and more accurate correlated computational techniques of the MCCM/3 suite have been performed for the compounds. The agreement between experiment and theory gives confidence to estimate the enthalpy of formation of 8-methoxy-α-tetralone. Similar calculations were done for the 5-, 6-, 7- and 8-methoxy-β-tetralone, for which experimental work was not done.  相似文献   

20.
The 1H and 13C NMR spectra of enantiomerically pure amines (S)-N,N-dimethyl-1-phenylethylamine, (S)-N-methyl-1-phenylethylamine, (S)-N-ethyl-1-phenylethylamine and (S)-N-ethyl-N-methyl-1-phenylethylamine in the presence of a twofold molar excess of dirhodium(II) tetratrifluoroacetate and dirhodium(II) Mosher’s acid derivatives [(4S) and (4R)] were measured in CDCl3 as a solvent. The amines having various substituents at the nitrogen atom (H, CH3 and CH2CH3) formed in such conditions as an equilibrium mixture of CSNR and CSNS 1:1 adducts. The signals of both diastereoisomers were observed in NMR spectra at either room temperature (303 K) or moderately decreased temperatures (263–273 K). The rates of mutual diastereoisomer conversion were estimated by selective inversion recovery experiments and varied from less than 0.1 to ca. 10 s?1, depending on the ligand and temperature. Analysis of 13C NMR data and NOE experimental data resulted in the unambiguous determination of the configuration at the nitrogen atom with respect to the carbon stereogenic centre.Modelling of adduct structures and calculations of molecular energy and NMR parameters (GIAO) using Density Functional Theory (DFT) were performed in order to support the experimental findings. The calculations were carried out using 3-21G//B3LYP (structure optimizing) and 311G(2d,p)/LanL2DZ//B3LYP theory levels (molecular energy and NMR shielding).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号