共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we consider a shallow arch with rise parameter h, free of lateral loading, but subject to prescribed end motion e with constant speed c. Attention is focused on finding out whether dynamic snap-through will occur. Quasi-static analysis is first performed to identify all equilibrium configurations and their stability properties when e and h are specified. If the arch is stretched quasi-statically, it will be straightened up and no snap-through will occur. However, when the speed c is not negligible it is possible for the arch to snap to the other side dynamically. Careful analysis shows that the only possible situation when dynamic snap-through may occur is and . In this case, to prevent dynamic snap-through to occur the end speed c must not exceed a critical speed, which is a function of e and h. The minimum critical stretching speed is found to be 25.9 for all possible combinations of e and h. 相似文献
2.
Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load 总被引:2,自引:0,他引:2
This paper investigates the non-linear in-plane buckling of pin-ended shallow circular arches with elastic end rotational restraints under a central concentrated load. A virtual work method is used to establish both the non-linear equilibrium equations and the buckling equilibrium equations. Analytical solutions for the non-linear in-plane symmetric snap-through and antisymmetric bifurcation buckling loads are obtained. It is found that the effects of the stiffness of the end rotational restraints on the buckling loads, and on the buckling and postbuckling behaviour of arches, are significant. The buckling loads increase with an increase of the stiffness of the rotational restraints. The values of the arch slenderness that delineate its snap-through and bifurcation buckling modes, and that define the conditions of buckling and of no buckling for the arch, increase with an increase of the stiffness of the rotational end restraints. 相似文献
3.
This paper presents a theoretical analysis for the long-term non-linear elastic in-plane behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches. It is known that an elastic shallow arch does not buckle under a load that is lower than the critical loads for its bifurcation or limit point buckling because its buckling equilibrium configuration cannot be achieved, and the arch is in a stable equilibrium state although its structural response may be quite non-linear under the load. However, for a CFST arch under a sustained load, the visco-elastic effects of creep and shrinkage of the concrete core produce significant long-term increases in the deformations and bending moments and subsequently lead to a time-dependent change of its equilibrium configuration. Accordingly, the bifurcation point and limit point of the time-dependent equilibrium path and the corresponding buckling loads of CFST arches also change with time. When the changing time-dependent bifurcation or limit point buckling load of a CFST arch becomes equal to the sustained load, the arch may buckle in a bifurcation mode or in a limit point mode in the time domain. A virtual work method is used in the paper to investigate bifurcation and limit point buckling of shallow circular CFST arches that are subjected to a sustained uniform radial load. The algebraically tractable age-adjusted effective modulus method is used to model the time-dependent behaviour of the concrete core, based on which solutions for the prebuckling structural life time corresponding to non-linear bifurcation and limit point buckling are derived. 相似文献
4.
In this paper an integral equation solution to the linear and geometrically nonlinear problem of non-uniform in-plane shallow arches under a central concentrated force is presented. Arches exhibit advantageous behavior over straight beams due to their curvature which increases the overall stiffness of the structure. They can span large areas by resolving forces into mainly compressive stresses and, in turn confining tensile stresses to acceptable limits. Most arches are designed to operate linearly under service loads. However, their slenderness nature makes them susceptible to large deformations especially when the external loads increase beyond the service point. Loss of stability may occur, known also as snap-through buckling, with catastrophic consequences for the structure. Linear analysis cannot predict this type of instability and a geometrically nonlinear analysis is needed to describe efficiently the response of the arch. The aim of this work is to cope with the linear and geometrically nonlinear problem of non-uniform shallow arches under a central concentrated force. The governing equations of the problem are comprised of two nonlinear coupled partial differential equations in terms of the axial (tangential) and transverse (normal) displacements. Moreover, as the cross-sectional properties of the arch vary along its axis, the resulting coupled differential equations have variable coefficients and are solved using a robust integral equation numerical method in conjunction with the arc-length method. The latter method allows following the nonlinear equilibrium path and overcoming bifurcation and limit (turning) points, which usually appear in the nonlinear response of curved structures like shallow arches and shells. Several arches are analyzed not only to validate our proposed model, but also to investigate the nonlinear response of in-plane thin shallow arches. 相似文献
5.
The nonlinear dynamic behaviors of nonlinear viscoelastic shallow arches sub- jected to external excitation are investigated. Based on the d'Alembert principle and the Euler-Bernoulli assumption, the governing equation of a shallow arch is obtained, where the Leaderman constitutive relation is applied. The Galerkin method and numerical in- tegration are used to study the nonlinear dynamic properties of the viscoelastic shallow arches. Moreover, the effects of the rise, the material parameter and excitation on the nonlinear dynamic behaviors of the shallow arch viscoelastic shallow arches may appear to have a are investigated. The results show that chaotic motion for certain conditions. 相似文献
6.
When the side of a beverage can or the domed lid of a jar is pushed inward, all or part of the structure may suddenly snap into an inverted configuration. The velocity of the pushing motion affects this instability. Most previous analyses of snap-through have considered force control (increasing the pushing force, e.g., a weight). Snap-through under dynamic, unilateral displacement control is investigated here, with the indentor moving at constant velocity (as in a universal testing machine) until snap-through occurs. Shallow elastic arches with immovable pinned ends are analyzed. Attention is focused on the critical height of the indentor at which snap-through is initiated. The effects of the indentor velocity, indentor location along the span, initial arch height, and damping magnitude are investigated. In addition, experiments are conducted on shallow buckled beams, which behave similarly to arches. Usually, the higher the indentor velocity, the further the indentor must move before snap-through occurs. 相似文献
7.
Curved beams and panels can often be found as structural components in aerospace, mechanical and civil engineering systems. When curved structures are subjected to dynamic loads, they are susceptible to dynamic instabilities especially dynamic snap-through buckling. The identification of the dynamic stability boundary that separate the non-snap and post-snap responses is hence necessary for the safe design of such structures, but typically requires extensive transient simulations that may lead to high computation cost. This paper proposes a scaling approach that reveals the similarities between dynamic snap-through boundaries of different structures. Such identified features can be directly used for fast approximations of dynamic stability boundaries of slender curved structures when their geometric parameters or boundary conditions are varied. The scaled dynamic stability boundaries of half-sine arches, parabolic arches and cylindrical panels are studied. 相似文献
8.
The load-bearing capacity of structures can be influenced by variations in parameters, such as initial geometric defects, multi-parameter loadings, material specifications and temperature. This paper aims to introduce a new formulation to trace the stability boundaries of two-parameter elastic structures. The proposed procedure can find a set of critical points, both limit and bifurcation ones, via a modified Newton’s method. In the authors’ formulation, the residual force is set to zero, and a critically constraint is satisfied simultaneously. Numerical examples presented in this paper demonstrate the efficiency of the suggested method. 相似文献
9.
Jiazhong Zhang 《International Journal of Non》2003,38(4):457-466
The focus of this paper is on the investigation of the mathematical nature of buckling from the point of view of bifurcation theory. For the doubly curved orthotropic panels subjected to quasi-static uniform load and with hinged boundary conditions, the solution to the non-linear partial differential equation is partitioned into two parts and projected onto the complete space spanned by the eigenfunctions of the linear operator of the governing equation. Furthermore, the fundamental branch, from which a new solution will emanate, is approximated by the first single mode pair which is close to the real membrane state. Whereas the ensuing bifurcated branch is approximated by the other single mode pair, under the assumption that the coupling between modes can be neglected. The present analysis could give a deep insight into the mechanism of the instability of panel structures, and show that there exists a mode transition at the critical point and the snap-through, then results from saddle-node bifurcation on the bifurcated branch. As a conclusion, the buckling of the system studied can be stated as: a bifurcated branch emanates from the fundamental branch at a critical point, and a saddle-node bifurcation, behaving as jumping, then occurs on the ensuing bifurcated branch. 相似文献
10.
Using a semi-analytical method,the nonlinear stability of a spherical shallow shellunder centrally distributed and concentrated loads is investigated in this paper.The longermanual calculation has been avoided when finding the approximate solution,and the P-Wmcharacteristic relation can be given analytically. 相似文献
11.
几何缺陷浅拱的动力稳定性分析 总被引:2,自引:1,他引:2
研究了几何缺陷对粘弹性铰支浅拱动力稳定性能的影响。从达朗贝尔原理和欧拉-贝努利假定出发推导了粘弹性铰支浅拱在正弦分布突加荷载作用下的动力学控制方程,并采用Galerkin截断法得到了可用龙格-库塔法求解的无量纲化非线性微分方程组。同时引入能有效追踪结构动力后屈曲路径的广义位移控制法,对含几何缺陷浅拱的响应曲线进行几何、材料双重非线性有限元分析。用这两种方法分析了前三阶谐波缺陷对浅拱动力稳定性能的影响,其中动力临界荷载由B-R准则判定。主要结论有:材料粘弹性使浅拱动力临界荷载增大且结构响应曲线与弹性情况差别很大;二阶谐波缺陷影响显著,它使动力临界荷载明显下降且使得浅拱粘弹性动力临界荷载可能低于弹性动力临界荷载。 相似文献
12.
This paper presents a theoretical analysis of the dynamic large deformation response of highly circular arches under impact. By the Instantaneous Configuration Method (ICM), the solutions of the entire large deformation response process of the problem are obtained. The influences of the mass ratio, the energy ratio and the supported condition on the final deformation, the response time and the occurrence of plastic deformation are discussed in detail. The necessary condition for occurrence of the local reverse bending phenomenon has been found. An approximate method is provided to describe the phenomenon. The numerical results are in good agreement with experimental data. 相似文献
13.
This paper presents a thorough and comprehensive investigation of non-linear buckling and postbuckling analyses of pin-ended shallow circular arches subjected to a uniform radial load and which have equal elastic rotational end-restraints. The differential equations of equilibrium for non-linear buckling and postbuckling are established based on a virtual work approach. Exact solutions for the non-linear bifurcation, limit point and lowest buckling loads are obtained; in particular, exact solutions for the non-linear postbuckling equilibrium paths are derived. The criteria for switching between fundamental buckling and postbuckling modes are developed in terms of critical values of a geometric parameter for an arch, with exact solutions for these critical values of geometric parameter being obtained. Analytical solutions of non-linear buckling and postbuckling problems for arches with rotational end-restraints are of great interest, since they constitute one of the very few closed-form analyses of buckling and postbuckling behaviour of continuous structural systems. These exact solutions are a contribution to the non-linear structural mechanics of arches, as well as providing useful benchmark solutions for verifying non-linear numerical analyses. 相似文献
14.
In this paper, the dynamic stability of shallow structures such as arches and curved panels under stochastically fluctuating loads is studied. Sufficient conditions guaranteeing the almost-sure stability in both symmetric modes and unsymmetric modes of deformation are obtained first by Infante's method. Necessary and sufficient conditions are determined by evaluating the largest Lyapunov exponent of the perturbed solution. 相似文献
15.
严圣平 《应用数学和力学(英文版)》1997,18(10):1015-1020
I.Intr0ducti0nTheclampedtruncatedshailowsphericalshellwithanondeformablerigidbodyatthecenterisoftenusedinstructureandelasticcomponentofprecisioninstrument.Inthebuildingengineering,wemustpreventtheshelllosingstability.Butintheelasticcomponent0fprecisionins… 相似文献
16.
Dynamics of a simple two degrees of freedom (d.o.f.) mechanical system is considered, to illustrate the phenomena of modal interaction. The system has a natural symmetry of shape and is subjected to symmetric loading. Two stable equilibrium configurations are separated by an unstable one, so that the model system can perform cross-well oscillations. Nonlinear statics and dynamics are considered, with the emphasis on detecting conditions for instability of symmetric configurations and analysis of bi-modal non-symmetric motions. Nonlinear local dynamics is analyzed by multiple scales method. Direct numerical integration of original equations of motions is carried out to validate analysis of modulation equations. In global dynamics (analysis of cross-well oscillations) Lyapunov exponents are used to estimate qualitatively a type of motion exhibited by the mechanical system. Modal interactions are demonstrated both in the local dynamics and for snap-through oscillations, including chaotic motions. This mechanical system may be looked upon as a lumped parameters model of continuous elastic structures (spherical segments, cylindrical panels, buckled plates, etc.). Analyses performed in the paper qualitatively describe complicated phenomena in local and global dynamics of original structures. 相似文献
17.
In this paper we study the deformation and stability of a shallow shell under uniform edge tension, both theoretically and experimentally. Von Karman’s plate model is adopted to formulate the equations of motion. For a shell with axisymmetrical initial shape, the equilibrium positions can be classified into axisymmetrical and unsymmetrical solutions. While there may exist both stable and unstable axisymmetrical solutions, all the unsymmetrical solutions are unstable. Since the unsymmetrical solutions will not affect the stability of the axisymmetrical solutions, it is concluded that for quasi-static analysis, there is no need to include unsymmetrical assumed modes in the calculation. If the shell is initially in the unstrained configuration, it will only be flattened smoothly when the edge tension is applied. No snap-through buckling is possible in this case. On the other hand, if the shell is initially in the strained position, it will be snapped back to the stable position on the other side of the base plane when the edge tension reaches a critical value. Experiment is conducted on several free brass shells of different initial heights to verify the theoretical predictions. Generally speaking, for the range of initial height H < 10 the experimental measurements of the deformation and the reverse snapping load agree well with theoretical predictions. 相似文献
18.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells 相似文献
19.
M. Eletta Negretti Scott A. Socolofsky Andreas C. Rummel Gerhard H. Jirka 《Experiments in fluids》2005,38(4):403-414
Shallow wakes that occur in a wide range of natural flows tend to generate instabilities that develop into large, 2D coherent structures (2DCS). We present the results of an experimental study to stabilize shallow wakes by local, enhanced bottom roughness. Two successful stabilization strategies are compared to a base case of an unsteady bubble wake. First, localized bed roughness is placed in the lateral shear layers near the shoulders of the cylinder. Second, a local roughness element is placed at the end of the recirculation bubble, in the downstream region where large-scale vortices would normally shed. Dye visualization is used to assess the qualitative behavior of the wake, and two-component laser Doppler velocimetry (LDV) measurements are made to measure the Reynolds stress distributions and time-averaged velocity profiles. In both stabilization cases, a minimum patch size of the enhanced roughness elements is required for stabilization, which depends on the momentum thickness of the shear layers and the locations of enhanced Reynolds shear stresses. The main effect of the wake stabilization is a reduction in momentum exchange with the ambient flow due to damping of the large 2DCS. This reduction in eddy diffusivity results in a narrower wake and a slower decay of the centerline velocity deficit with downstream distance compared to the base case of an unsteady bubble wake. 相似文献
20.
采用有限元法中的伪弧长算法研究了集中载荷作用下圆拱的大范围非线性问题,给出了临界载荷与圆心角间的关系曲缄以及极值分叉与简单分叉的分界点,并对屈曲后的变形进行了追踪,文中首先简述伪弧长算法,然后给出了计算结果。 相似文献